733 resultados para Net Operating Loss (NOL)
Resumo:
The netcdf files in this archive comprise climate model output from Community Earth System Model for experiments looking at forest loss over Western North America and the Amazon. For further description of the model and configuration for these experiments please see the accompanying manuscript: Synergistic ecoclimate teleconnections from forest loss in different regions structure global ecological responses Elizabeth S. Garcia, Abigail L. S. Swann, Juan C. Villegas, David D. Breshears, Darin J. Law, Scott R. Saleska, and Scott C. Stark published in PLOS ONE, 2016. Contact information in README.txt
Resumo:
Seals must manage their energy reserves carefully while they fast on land to ensure that they go to sea with sufficient fuel to sustain them until they find food. Glucocorticoids (GCs) have been implicated in the control of fuel metabolism and termination of fasting in pinnipeds. Here we tested the hypothesis that dexamethasone, an artificial GC, increases fat and protein catabolism, and induces departure from the breeding colony in wild, fasting grey seal pups. A single intramuscular dose of dexamethasone completely suppressed cortisol production for 24–72 h, demonstrating activation of GC receptors. In experiment 1, we compared the effects of a single dose of dexamethasone or saline administered 10 days after weaning on fasting mass and body composition changes, cortisol, blood urea nitrogen (BUN) and glucose levels, and timing of departure from the colony. In experiment 2, we investigated the effects of dexamethasone on short-term (5 days) changes in mass loss, body composition and BUN levels. In experiment 1, dexamethasone induced a short-lived increase in mass loss, but there was no difference in timing of departure between dexamethasone- and saline-treated pups (N=10). In experiment 2, dexamethasone increased protein and water loss and prevented a decrease in BUN levels (N=11). Our data suggest changes in cortisol contribute to regulation of protein catabolism in fasting seal pups, irrespective of the sex of the animal, but do not terminate fasting. By affecting the rate of protein depletion, lasting changes in cortisol levels could influence the amount of time seal pups have to find food, and thus may have important consequences for their survival.
Resumo:
Advances in FPGA technology and higher processing capabilities requirements have pushed to the emerge of All Programmable Systems-on-Chip, which incorporate a hard designed processing system and a programmable logic that enable the development of specialized computer systems for a wide range of practical applications, including data and signal processing, high performance computing, embedded systems, among many others. To give place to an infrastructure that is capable of using the benefits of such a reconfigurable system, the main goal of the thesis is to implement an infrastructure composed of hardware, software and network resources, that incorporates the necessary services for the operation, management and interface of peripherals, that coompose the basic building blocks for the execution of applications. The project will be developed using a chip from the Zynq-7000 All Programmable Systems-on-Chip family.
Resumo:
PURPOSE: To assess and describe sequential morphological changes in the choroidal neovascularization (CNV) net using optical coherence tomography angiography (OCTA) in patients undergoing treatment with intravitreal antivascular endothelial growth factor (VEGF). METHODS: Prospective cohort study. OCTA was performed sequentially: before (t0), 1 h (t1), 1 week (t2) and 1 month after the injection (t3), using Avanti RTVue XR equipped with the AngioVue® software (Optovue, Calif., USA). All images were classified by two independent graders. RESULTS: Ten eyes of 10 patients, with a mean age of 72.4 ± 10.5 years, were included. CNV morphology was described as tree-like in 5 eyes, glomerular in 1 and fragmented in 4. A fibrovascular capsule surrounding the CNV net was found in 4 eyes and a feeder trunk was noticed in 6. No changes were observed at t1. Loss of peripheral capillaries, vessel fragmentation and decreased vessel density were evident in 8 eyes at t2. The CNV capillary density and the peripheral anastomosis increased in all of these at t3. Two eyes remained unchanged through the whole length of follow-up. CONCLUSIONS: Significant changes in the CNV net can be observable in OCTA at least 1 week after intravitreal anti-VEGF. The safety of frequent examinations may provide a method of gauging treatment effects.
Resumo:
The pharmacological management of early pregnancy loss reduced substantially the need for dilation and curettage. However, prognostic markers of successful outcome were not established. Thus the major purpose of this study was to determine the sensitivity and specificity of the uterine artery pulsatility (PI) and resistance (RI) indices to detect early pregnancy loss patients requiring dilation and curettage after unsuccessful management.
Resumo:
Approximately 1.6 per 1,000 newborns in the U.S. are born with hearing loss. Congenital hearing loss poses a risk to their speech, language, cognitive, and social-emotional development. Early detection and intervention can improve outcomes. Every state has an Early Hearing Detection and Intervention program (EHDI) to promote and track screening, audiological assessments and linkage to early intervention. However, a large percentage of children are “lost to system (LTS),” meaning that they did not receive recommended care or that it was not reported. This study used data from the 2009-2010 National Survey of Children with Special Health Care Needs and data from the 2011 EHDI Hearing Screening and Follow-Up Survey to examine how 1) family characteristics; 2) EHDI program effectiveness, as determined by LTS percentages; and 3) the family conditions of education and poverty are related to parental report of inadequate care. The sample comprised 684 children between the ages of 0 and 5 years with hearing loss. The results indicated that living in states with less effective EHDI programs was associated with an increased likelihood of not receiving early intervention services (EIS) and of reporting poor family-centered communication. Sibling classification was associated with both receipt of EIS and report of unmet need. Single mothers were less likely to report increased difficulties accessing care. Poor and less educated families, assessed separately, who lived in states with less effective EHDI programs, were more likely to report non-receipt of EIS and less likely to report unmet need as compared to similar families living in states with more effective programs. Poor families living in states with less effective programs were more likely to report less coordinated care than were poor families living in states with more effective programs. This study supports the conclusion that both family characteristics and the effectiveness of state programs affect quality of care outcomes. It appears that less effective state programs affect disadvantaged families’ service receipt report more than that of advantaged families. These findings are important because they may provide insights into the development of targeted efforts to improve the system of care for children with hearing loss.
Resumo:
Cover title.
Resumo:
"Report no. USCG/NTSB-MAR-75-6."
Resumo:
As the semiconductor industry struggles to maintain its momentum down the path following the Moore's Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV's electromigration (EM) and several other reliability loss mechanisms caused by TSV-induced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit's performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to capture DRAM soft error in 3D multi-core CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU's operating points to adjust DRAM's voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM's resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future.
Resumo:
The selection of the optimal operating conditions for an industrial acrylonitrile recovery unit was conducted by the systematic application of the response surface methodology, based on the minimum energy consumption and products specifications as process constraints. Unit models and plant simulation were validated against operating data and information. A sensitivity analysis was carried out in order to identify the set of parameters that strongly affect the trajectories of the system while keeping products specifications. The results suggest that energy savings of up to 10% are possible by systematically adjusting operating conditions.
Resumo:
In the last sixty years a steadily maintained process of convergence towards the Castilian national standard has been occurring in Southern Spain affecting urban middle-class speakers’ varieties, particularly phonology and lexis. As a consequence, unmarked features characterising innovative southern pronunciation have become less frequent and, at the same time, certain standard marked features have been adapted to the southern phonemic inventory. Then, urban middle-class varieties have progressively been stretching out the distance separating them from working-class and rural varieties, and bringing them closer to central Castilian varieties. Intermediate, yet incipient koineised varieties have been described including also transitional Murcia and Extremadura dialects (Hernández & Villena 2009, Villena, Vida & von Essen 2015). (1) Some of the standard phonologically marked features have spread out among southern speakers exclusively based on their mainstream social prestige and producing not only changes in obstruent phoneme inventory –i.e. acquisition of /s/ vs. /θ/ contrast, but also standstill and even reversion of old consonant push- or pull-chain shifts –e.g. /h/ or /d/ fortition, affricate /ʧ/, etc. as well as traditional lexis shift (Villena et al. 2016). Internal (grammar and word frequency) and external (stratification, network and style) factors constraining those features follow similar patterns in the Andalusian speech communities analysed so far (Granada, Malaga) but when we zoom in on central varieties, which are closer to the national standard and then more conservative, differences in frequency increase and conflict sites emerge. (2) Unmarked ‘natural’ phonological features characterising southern dialects, particularly deletion of syllable-final consonant, do not keep pace with this trend of convergence towards the standard. Thus a combination of southern innovative syllable-final and standard conservative onset-consonant features coexist. (3). The main idea is that this intermediate variety is formed through changes suggesting that Andalusian speakers look for the best way of accepting marked prestige features without altering coherence within their inventory. Either reorganisation of the innovative phonemic system in such a way that it may include Castilian and standard /s/ vs. /θ/ contrast or re-syllabification of aspirated /s/ before dental stop are excellent examples of how and why linguistic features are able to integrate intermediate varieties between the dialect-standard continuum.
Resumo:
We present a study where the energy loss function of Ta2O5, initially derived in the optical limit for a limited region of excitation energies from reflection electron energy loss spectroscopy (REELS) measurements, was improved and extended to the whole momentum and energy excitation region through a suitable theoretical analysis using the Mermin dielectric function and requiring the fulfillment of physically motivated restrictions, such as the f- and KK-sum rules. The material stopping cross section (SCS) and energy-loss straggling measured for 300–2000 keV proton and 200–6000 keV helium ion beams by means of Rutherford backscattering spectrometry (RBS) were compared to the same quantities calculated in the dielectric framework, showing an excellent agreement, which is used to judge the reliability of the Ta2O5 energy loss function. Based on this assessment, we have also predicted the inelastic mean free path and the SCS of energetic electrons in Ta2O5.
Resumo:
A large proportion of human populations suffer memory impairments either caused by normal aging or afflicted by diverse neurological and neurodegenerative diseases. Memory enhancers and other drugs tested so far against memory loss have failed to produce therapeutic efficacy in clinical trials and thus, there is a need to find remedy for this mental disorder. In search for cure of memory loss, our laboratory discovered a robust memory enhancer called RGS14(414). A treatment in brain with its gene produces an enduring effect on memory that lasts for lifetime of rats. Therefore, current thesis work was designed to investigate whether RGS14(414) treatment can prevent memory loss and furthermore, explore through biological processes responsible for RGS-mediated memory enhancement. We found that RGS14(414) gene treatment prevented episodic memory loss in rodent models of normal aging and Alzheimer´s disease. A memory loss was observed in normal rats at 18 months of age; however, when they were treated with RGS14(414) gene at 3 months of age, they abrogated this deficit and their memory remained intact till the age of 22 months. In addition to normal aging rats, effect of memory enhancer treatment in mice model of Alzheimer´s disease (AD-mice) produced a similar effect. AD-mice subjected to treatment with RGS14(414) gene at the age of 2 months, a period when memory was intact, showed not only a prevention in memory loss observed at 4 months of age but also they were able to maintain normal memory after 6 months of the treatment. We posit that long-lasting effect on memory enhancement and prevention of memory loss mediated through RGS14(414) might be due to a permanent structural change caused by a surge in neuronal connections and enhanced neuronal remodeling, key processes for long-term memory formation. A neuronal arborization analysis of both pyramidal and non-pyramidal neurons in brain of RGS14(414)-treated rats exhibited robust rise in neurites outgrowth of both kind of cells, and an increment in number of branching from the apical dendrite of pyramidal neurons, reaching to almost three times of the control animals. To further understand of underlying mechanism by which RGS14(414) induces neuronal arborization, we investigated into neurotrophic factors. We observed that RGS14 treatment induces a selective increase in BDNF. Role of BDNF in neuronal arborization, as well as its implication in learning and memory processes is well described. In addition, our results showing a dynamic expression pattern of BDNF during ORM processing that overlapped with memory consolidation further support the idea of the implication of this neurotrophin in formation of long-term memory in RGS-animals. On the other hand, in studies of expression profiling of RGS-treated animals, we have demonstrated that 14-3-3ζ protein displays a coherent relationship to RGS-mediated ORM enhancement. Recent studies have demonstrated that the interaction of receptor for activated protein kinase 1 (RACK1) with 14-3-3ζ is essential for its nuclear translocation, where RACK1-14-3-3ζ complex binds at promotor IV region of BDNF and promotes an increase in BDNF gene transcription. These observations suggest that 14-3-3ζ might regulate the elevated level of BDNF seen in RGS14(414) gene treated animals. Therefore, it seems that RGS-mediated surge in 14-3-3ζ causes elevated BDNF synthesis needed for neuronal arborization and enhanced ORM. The prevention of memory loss might be mediated through a restoration in BDNF and 14-3-3ζ protein levels, which are significantly decreased in aging and Alzheimer’s disease. Additionally, our results demonstrate that RGS14(414) treatment could be a viable strategy against episodic memory loss.