994 resultados para Nerve cell
Resumo:
Background Facial motor evoked potential (FMEP) amplitude ratio reduction at the end of the surgery has been identified as a good predictor for postoperative facial nerve outcome. We sought to investigate variations in FMEP amplitude and waveform morphology during vestibular schwannoma (VS) resection and to correlate these measures with postoperative facial function immediately after surgery and at the last follow-up. Methods Intraoperative orbicularis oculi and oris muscles FMEP data from 35 patients undergoing surgery for VS resection were collected, then analysed by surgical stage: initial, dural opening, tumour dissection (TuDis), tumour resection (TuRes) and final. Findings Immediately after surgery, postoperative facial function correlated significantly with the FMEP amplitude ratio during TuDis, TuRes and final stages in both the orbicularis oculi (p = 0.003, 0.055 and 0.028, respectively) and oris muscles (p = 0.002, 0.104 and 0.014, respectively). At the last follow-up, however, facial function correlated significantly with the FMEP amplitude ratio only during the TuDis (p = 0.005) and final (p = 0.102) stages for the orbicularis oris muscle. At both time points, postoperative facial paresis correlated significantly with FMEP waveform deterioration in orbicularis oculi during the final stage (immediate, p = 0.023; follow-up, p = 0.116) and in orbicularis oris during the TuDis, TuRes and final stages (immediate, p = 0.071, 0.000 and 0.001, respectively; follow-up, p = 0.015, 0.001 and 0.01, respectively). Conclusions FMEP amplitude ratio and waveform morphology during VS resection seem to represent independent quantitative parameters that can be used to predict postoperative facial function. Event-to-baseline FMEP monitoring is quite useful to dictate when intraoperative changes in surgical strategy are warranted to reduce the chances of facial nerve injury.
Resumo:
PURPOSE: To compare the abilities of scanning laser polarimetry (SLP) with enhanced corneal compensation (ECC) and variable corneal compensation (VCC) modes for detection of retinal nerve fiber layer (RNFL) loss in eyes with band atrophy (BA) of the optic nerve. DESIGN. Cross-sectional study. METHODS: Thirty-seven eyes from 37 patients with BA and temporal visual field defect from chiasmal compression and 40 eyes from 40 healthy subjects were studied. Subjects underwent standard automated perimetry and RNFL measurements using an SLP device equipped with VCC and ECC. Receiver operating characteristic (ROC) curves were calculated for each parameter. Pearson correlation coefficients were obtained to evaluate the relationship between RNFL thickness parameters and severity of visual field loss, as assessed by the temporal mean defect. RESULTS: All RNFL thickness parameters were significantly lower in eyes with BA compared with normal eyes with both compensation modes. However, no statistically significant differences were observed in the areas under the ROC curves for the different parameters between GDx VCC and ECC (Carl Zeiss Meditec, Inc, Dublin, California, USA). Structure-function relationships also were similar for both compensation modes. CONCLUSIONS: No significant differences were found between the diagnostic accuracy of GDx ECC and that of VCC for detection of BA of the optic nerve. The use of GDx ECC does not seem to provide a better evaluation of RNFL loss on the temporal and nasal sectors of the peripapillary retina in subjects with BA of the optic nerve.
Resumo:
Epidemiological studies have provided evidence that high consumption of tomatoes effectively reduces the risk of reactive oxygen species (ROS)-mediated diseases such as cancer. Tomatoes are rich sources of lycopene, a potent singlet oxygen-quenching carotenoid. In addition to its antioxidant properties, lycopene shows an array of biological effects including antimutagenic and anticarcinogenic activities. In the present study, the chemopreventive action of lycopene was examined on DNA damage and clastogenic or aneugenic effects of H2O2 and n-nitrosodiethylamine (DEN) in the metabolically competent human hepatoma cell line (HepG2 cells). Lycopene at concentrations of 10. 25, and 50 mu M, was tested under three protocols: before, simultaneously, and after treatment with the mutagen, using the comet and micronucleus assays. Lycopene significantly reduced the genotoxicity and mutagenicity of H2O2 in all of the conditions tested. For DEN, significant reductions of primary DNA damage (comet assay) were detected when the carotenoid (all of the doses) was added in the cell culture medium before or simultaneously with the mutagen. In the micronucleus test, the protective effect of lycopene was observed only when added prior to DEN treatment. In conclusion, our results suggest that lycopene is a suitable agent for preventing chemically-induced DNA and chromosome damage. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Peripheral nerves are structures that, when damaged, can result in significant motor and sensory disabilities. Several studies have used therapeutic resources with the aim of promoting early nerve regeneration, such as the use of low-power laser. However, this laser therapy does not represent a consensus regarding the methodology, thus yielding controversial conclusions. The objective of our study was to investigate, by functional evaluation, the comparative effects of low-power laser (660 nm and 830 nm) on sciatic nerve regeneration following crushing injuries. Twenty-seven Wistar rats subjected to sciatic nerve injury were divided into three groups: group sham, consisting of rats undergoing simulated irradiation; a group consisting of rats subjected to gallium-aluminum-arsenide (GaAlAs) laser at 660 nm (10 J/cm(2), 30 mW and 0.06 cm(2) beam), and another one consisting of rats subjected to GaAlAs laser at 830 nm (10 J/cm(2), 30 mW and 0.116 cm(2)). Laser was applied to the lesion for 21 days. A sciatic functional index (SFI) was used for functional evaluation prior to surgery and on days 7, 14, and 21 after surgery. Differences in SFI were found between group 660 nm and the other ones at the 14th day. One can observe that laser application at 660 nm with the parameters and methods utilised was effective in promoting early functional recovery, as indicated by the SFI, over the period evaluated.
Resumo:
Objective: To study the influence of low power GaAsAl laser irradiation on the regeneration of a peripheral nerve, following a controlled crush injury. Material and methods: The right common fibular nerve of 30 Wistar rats was submitted to a crush injury with an adjustable load forceps (5 000 g, 10 minutes of application). The animals were divided into three groups (n=10), according to the postoperative procedure (no irradiation; sham irradiation; effective irradiation). Laser irradiation (830 nm wave-length; 100 mW emission power; continuous mode; 140 J/cm(2)) was started on the first postoperative day and continued over 21 consecutive days. Body mass, time spent on the walking track and functional peroneal index (PFI) were analyzed based on the hind footprints, both preoperatively and on the 21st postoperative day. Results: Walking time and PFI significantly improved in the group that received effective laser irradiation, despite the significant gain in body mass between the pre- and post-operative periods. Conclusion: Low Power GaAsAl laser irradiation, with the parameters used in our study, accelerated and improved fibular nerve regeneration in rats.
Resumo:
Objective: This study seeks to determine, through functional gait assessment in different irradiation sites, the influence of a low-intensity GaAsAl laser beam on an injury caused by crushing the peroneal nerve in rats. Methods: 53 rats were used, which were divided into six groups: normal, injured and untreated, injured and treated using placebo, injured and treated in the bone marrow, injured and treated in the nerve, and injured and treated in both (nerve and bone marrow). The peroneal nerve was crushed using a pair of tweezers, and subsequently treated with laser for 28 consecutive days. The functional gait evaluation analyzed the footprints, which were recorded with a video camera on an acrylic bridge in the preoperative period, and on postoperative days 14, 21 and 28, and assessed using PFI formula software. Results: In the functional gait evaluation, significant differences were found only on postoperative day 14. Conclusion: Based on the functional gait evaluation, low-intensity GaAs AI irradiation was able to accelerate and reinforce the process of peripheral nerve regeneration in rats on postoperative day 14, both in the bone marrow- and in the nerve-treated groups.
Resumo:
In order to qualify and quantify nerve fiber lesion following an acute crush injury, a morphologic and morphometric study was carried out in 25 Wistar rats divided into live groups of five animals each according to the crushing load applied, i.e., 500,1000, 5000, 10 000, and 15 000 g. The injury was produced under general anesthesia on a 5 mm-long intermediate segment of the right sciatic nerve for 10 min using a dead-weight machine. The animals were killed with an excessive dose of anesthetics 72 h later and submitted to perfusion with a fixing solution through the abdominal aorta immediately after death. Both the right and left sciatic nerves were removed and prepared for histologic and morphometric examinations: 5 mu m-thick sections stained with 1% Toluidine blue were examined under a light microscope equipped with a video camera linked to a computer loaded with a graphic program (KS 400). The morphometric studies included measuring total number of fibers, fiber density, fiber diameter, myelin fiber area, axon diameter, axon area and G ratio. The results showed that damage to the nerve fibers began to appear as early as with the 500g load and was similar in all groups despite the load applied, increasing with the 10000 and 15000g loads, although the external supporting tissues and small diameter fibers were preserved. The predominant type of lesion produced was axonotmesis. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Eukaryotic translation initiation factor 5A (eIF5A) has a unique character: the presence of an unusual amino acid, hypusine, which is formed by post-translational modifications. Even before the identification of hypusination in eIF5A, the correlation between hypusine formation and protein synthesis, shifting cell proliferation rates, had already been observed. Embryogenesis is a complex process in which cellular proliferation and differentiation are intense. In spite of the fact that many studies have described possible functions for eIF5A, its precise role is under investigation, and to date nothing has been reported about its participation in embryonic development. In this study we show that eIF5A is expressed at all mouse embryonic post-implantation stages with increase in eIF5A mRNA and protein expression levels between embryonic days E10.5 and E13.5. Immunohistochemistry revealed the ubiquitous presence of eIF5A in embryonic tissues and organs at E13.5 day. Interestingly, stronger immunoreactivity to eIF5A was observed in the stomodeum, liver, ectoderm, heart, and eye, and the central nervous system; regions which are known to undergo active differentiation at this stage, suggesting a role of eIF5A in differentiation events. Expression analyses of MyoD, a myogenic transcription factor, revealed a significantly higher expression from day E12.5 on, both at the mRNA and the protein levels suggesting a possible correlation to eIF5A. Accordingly, we next evidenced that inhibiting eIF5A hypusination in mouse myoblast C2C12 cells impairs their differentiation into myotubes and decreases MyoD transcript levels. Those results point to a new functional role for eIF5A, relating it to embryogenesis, development, and cell differentiation. J. Cell. Physiol. 225: 500-505, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background: Human postnatal stem cells have been identified in periodontal ligaments (PDLs). In this study, the in vitro biologic properties of CD105(+) enriched cell subsets from PDLs harvested from deciduous (DePDL) and permanent (PePDL) teeth are comparatively assessed. Methods: PDL tissue was obtained from 12 teeth (six primary and six permanent) from which CD105(+) CD34(-) CD45(-) cells were isolated by magnetic cell sorting. To identify and quantitatively compare the stem cell markers, DePDL and PePDL cells were assessed for CD166 surface antigen expression by flow cytometry, real-time polymerase chain reaction, and immunostaining for Stro-1 and Oct-4, osteogenic and adipogenic differentiation, and proliferation rate by trypan blue method. Results: Magnetic cell sorting isolated cell populations containing 23.87% (+/- 11.98%) and 11.68% (+/- 6.27%) of CD105(+) expressing cells from PePDL and DePDL, respectively. Flow cytometric analysis demonstrated a higher proportion of CD105(+) cells coexpressing CD166 surface antigen in PePDL, whereas immunostaining and real-time polymerase chain reaction analysis demonstrated that both cell subsets expressed Stro-1 and Oct-4. DePDL-CD105(+) subsets were more proliferative compared to PePDL subsets, and both cell populations showed multipotential capabilities to differentiate in vitro to osteoblast/cementoblast- and adipocyte-like cells. However, a higher expression of adipogenic-related genes was observed in DePDL cells, whereas PePDL-CD105(+) cell subset presented a more homogeneous osteoblast/cementoblast response. Conclusion: These findings demonstrate that highly purified mesenchymal progenitor cell subsets can be obtained from the PDLs of both deciduous and permanent teeth, and further indicate phenotype dissimilarities that may have an impact on their clinical applications. J Periodontol 2010;81:1207-1215.
Resumo:
In the last decades, the incidence of histoplasmosis, a pulmonary fungal disease caused by Histoplasma capsulatum, has increased worldwide. In this context, vaccines for the prevention of this infection or therapies are necessary. Cell-free antigens (CFAgs) from H. capsulatum when administered for murine immunization purposes are able to confer protection and control of the infection, since they activate cellular immunity. However the most of vaccination procedures need several anti, gens administrations and immunoadjuvants, which are not approved for use in humans. The aim of this study was to develop and characterize a vaccination approach using biodegradable PLGA microspheres (MS) that could allow the controlled and/or sustained release of the encapsulated antigens from H. capsulatum. CFAgs-loaded MS presented a size less than 10 mu m, were marked engulfed by bone marrow-derived macrophages (BMDM phi) and induced the nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production by these cells. Our data show that CFAgs-loaded MS induce cell activation, suggesting an immunostimulant effect to be further investigated during immunization procedures. CFAgs-loaded MS present potential to be used as vaccine in order to confer protection against H. capsulatum infection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Antibody phage display libraries are a useful tool in proteomic analyses. This study evaluated an antibody recombinant library for identification of sex-specific proteins on the sperm cell surface. The Griffin.1 library was used to produce phage antibodies capable of recognizing membrane proteins from Nelore sperm cells. After producing soluble monoclonal scFv, clones were screened on Simental sperm cells by flow cytometry and those that bound to 40-60% of cells were selected. These clones were re-analyzed using Nelore sperm cells and all clones bound to 40-60% of cells. Positive clones were submitted to a binding assay against male and female bovine leukocytes by flow cytometry and one clone preferentially bound to male cells. The results indicate that phage display antibodies are an alternative method for identification of molecules markers on sperm cells. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A shift in the activation of pulmonary macrophages characterized by an increase of IL-1, INF-alpha and IL-6 production has been induced in mice infected with Paracoccidioides brasiliensis. It is still unclear whether a functional shift in the resident alveolar macrophage population would be responsible for these observations due to the expression of cell surface molecules. We investigated pulmonary macrophages by flow cytometry from mice treated with P. brasiliensis derivatives by intratracheal route. In vivo labeling with the dye PKH26GL was applied to characterize newly recruited pulmonary macrophages from the bloodstream. Pulmonary macrophages from mice inflamed with P. brasiliensis derivatives showed a high expression of the surface antigens CD11b/CD18 and CD23 among several cellular markers. The expression of these markers indicated a pattern of activation of a subpopulation characterized as CD11b(+) or CD23(+), which was modulated in vitro by IFN-gamma and IL-4. Analysis of monocytes labelled with PKH26GL demonstrated that CD11b(+) cells did infiltrate the lung exhibiting a proinflammatoni pattern of activation, whereas CD23(+) cells were considered to be resident in the lung. These findings may contribute to better understand the pathology of lung inflammation caused by P. brasiliensis infection. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Using two mouse strains with different abilities to generate interferon (IFN)-gamma production after Mycobacterium tuberculosis infection, we tested the hypothesis that the frequency and activity of regulatory T (Treg) cells are influenced by genetic background. Our results demonstrated that the suppressive activity of spleen Treg cells from infected or uninfected BALB/c mice was enhanced, inhibiting IFN-gamma and interleukin (IL)-2 production. Infected C57BL/6 mice exhibited a decrease in the frequency of lung Treg cells and an increased ratio CD4(+):CD4(+)Foxp3(+) cells compared with infected BALB/c mice and uninfected C57BL/6 mice. Moreover, infected C57BL/6 mice also had a decrease in the immunosuppressive capacity of spleen Treg cells, higher lung IFN-gamma and IL-17 production, and restricted the infection better than BALB/c mice. Adoptive transfer of BALB/c Treg cells into BALB/c mice induced an increase in bacterial colony-forming unit (CFU) counts. Furthermore, BALB/c mice treated with anti-CD25 antibody exhibited lung CFU counts significantly lower than mice treated with irrelevant antibody. Our results show that in BALB/c mice, the Treg cells have a stronger influence than that in C57BL/6 mice. These data suggest that BALB/c and C57BL/6 mice may use some different mechanisms to control M. tuberculosis infection. Therefore, the role of Treg cells should be explored during the development of immune modulators, both from the perspective of the pathogen and the host. Immunology and Cell Biology (2011) 89, 526-534; doi:10.1038/icb.2010.116; published online 19 October 2010
Resumo:
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.