890 resultados para Nelson and Siegel model
Resumo:
The Arctic has undergone substantial changes over the last few decades in various cryospheric and derivative systems and processes. Of these, the Arctic sea ice regime has seen some of the most rapid change and is one of the most visible markers of Arctic change outside the scientific community. This has drawn considerable attention not only from the natural sciences, but increasingly, from the political and commercial sectors as they begin to grapple with the problems and opportunities that are being presented. The possible impacts of past and projected changes in Arctic sea ice, especially as it relates to climatic response, are of particular interest and have been the subject of increasing research activity. A review of the current knowledge of the role of sea ice in the climate system is therefore timely. We present a review that examines both the current state of understanding, as regards the impacts of sea-ice loss observed to date, and climate model projections, to highlight hypothesised future changes and impacts on storm tracks and the North Atlantic Oscillation. Within the broad climate-system perspective, the topics of storminess and large-scale variability will be specifically considered. We then consider larger-scale impacts on the climatic system by reviewing studies that have focused on the interaction between sea-ice extent and the North Atlantic Oscillation. Finally, an overview of the representation of these topics in the literature in the context of IPCC climate projections is presented. While most agree on the direction of Arctic sea-ice change, the rates amongst the various projections vary greatly. Similarly, the response of storm tracks and climate variability are uncertain, exacerbated possibly by the influence of other factors. A variety of scientific papers on the relationship between sea-ice changes and atmospheric variability have brought to light important aspects of this complex topic. Examples are an overall reduction in the number of Arctic winter storms, a northward shift of mid-latitude winter storms in the Pacific and a delayed negative NAO-like response in autumn/winter to a reduced Arctic sea-ice cover (at least in some months). This review paper discusses this research and the disagreements, bringing about a fresh perspective on this issue.
Resumo:
We investigate the Arctic basin circulation, freshwater content (FWC) and heat budget by using a high-resolution global coupled ice–ocean model implemented with a state-of-the-art data assimilation scheme. We demonstrate that, despite a very sparse dataset, by assimilating hydrographic data in and near the Arctic basin, the initial warm bias and drift in the control run is successfully corrected, reproducing a much more realistic vertical and horizontal structure to the cyclonic boundary current carrying the Atlantic Water (AW) along the Siberian shelves in the reanalysis run. The Beaufort Gyre structure and FWC and variability are also more accurately reproduced. Small but important changes in the strait exchange flows are found which lead to more balanced budgets in the reanalysis run. Assimilation fluxes dominate the basin budgets over the first 10 years (P1: 1987–1996) of the reanalysis for both heat and FWC, after which the drifting Arctic upper water properties have been restored to realistic values. For the later period (P2: 1997–2004), the Arctic heat budget is almost balanced without assimilation contributions, while the freshwater budget shows reduced assimilation contributions compensating largely for surface salinity damping, which was extremely strong in this run. A downward trend in freshwater export at the Canadian Straits and Fram Strait is found in period P2, associated with Beaufort Gyre recharge. A detailed comparison with observations and previous model studies at the individual Arctic straits is also included.
Resumo:
In the year 2007 a General Observation Period (GOP) has been performed within the German Priority Program on Quantitative Precipitation Forecasting (PQP). By optimizing the use of existing instrumentation a large data set of in-situ and remote sensing instruments with special focus on water cycle variables was gathered over the full year cycle. The area of interest covered central Europe with increasing focus towards the Black Forest where the Convective and Orographically-induced Precipitation Study (COPS) took place from June to August 2007. Thus the GOP includes a variety of precipitation systems in order to relate the COPS results to a larger spatial scale. For a timely use of the data, forecasts of the numerical weather prediction models COSMO-EU and COSMO-DE of the German Meteorological Service were tailored to match the observations and perform model evaluation in a near real-time environment. The ultimate goal is to identify and distinguish between different kinds of model deficits and to improve process understanding.
Assessing and understanding the impact of stratospheric dynamics and variability on the earth system
Resumo:
Advances in weather and climate research have demonstrated the role of the stratosphere in the Earth system across a wide range of temporal and spatial scales. Stratospheric ozone loss has been identified as a key driver of Southern Hemisphere tropospheric circulation trends, affecting ocean currents and carbon uptake, sea ice, and possibly even the Antarctic ice sheets. Stratospheric variability has also been shown to affect short term and seasonal forecasts, connecting the tropics and midlatitudes and guiding storm track dynamics. The two-way interactions between the stratosphere and the Earth system have motivated the World Climate Research Programme's (WCRP) Stratospheric Processes and Their Role in Climate (SPARC) DynVar activity to investigate the impact of stratospheric dynamics and variability on climate. This assessment will be made possible by two new multi-model datasets. First, roughly 10 models with a well resolved stratosphere are participating in the Coupled Model Intercomparison Project 5 (CMIP5), providing the first multi-model ensemble of climate simulations coupled from the stratopause to the sea floor. Second, the Stratosphere Historical Forecasting Project (SHFP) of WCRP's Climate Variability and predictability (CLIVAR) program is forming a multi-model set of seasonal hindcasts with stratosphere resolving models, revealing the impact of both stratospheric initial conditions and dynamics on intraseasonal prediction. The CMIP5 and SHFP model-data sets will offer an unprecedented opportunity to understand the role of the stratosphere in the natural and forced variability of the Earth system and to determine whether incorporating knowledge of the middle atmosphere improves seasonal forecasts and climate projections. Capsule New modeling efforts will provide unprecedented opportunities to harness our knowledge of the stratosphere to improve weather and climate prediction.
Resumo:
Data assimilation is predominantly used for state estimation; combining observational data with model predictions to produce an updated model state that most accurately approximates the true system state whilst keeping the model parameters fixed. This updated model state is then used to initiate the next model forecast. Even with perfect initial data, inaccurate model parameters will lead to the growth of prediction errors. To generate reliable forecasts we need good estimates of both the current system state and the model parameters. This paper presents research into data assimilation methods for morphodynamic model state and parameter estimation. First, we focus on state estimation and describe implementation of a three dimensional variational(3D-Var) data assimilation scheme in a simple 2D morphodynamic model of Morecambe Bay, UK. The assimilation of observations of bathymetry derived from SAR satellite imagery and a ship-borne survey is shown to significantly improve the predictive capability of the model over a 2 year run. Here, the model parameters are set by manual calibration; this is laborious and is found to produce different parameter values depending on the type and coverage of the validation dataset. The second part of this paper considers the problem of model parameter estimation in more detail. We explain how, by employing the technique of state augmentation, it is possible to use data assimilation to estimate uncertain model parameters concurrently with the model state. This approach removes inefficiencies associated with manual calibration and enables more effective use of observational data. We outline the development of a novel hybrid sequential 3D-Var data assimilation algorithm for joint state-parameter estimation and demonstrate its efficacy using an idealised 1D sediment transport model. The results of this study are extremely positive and suggest that there is great potential for the use of data assimilation-based state-parameter estimation in coastal morphodynamic modelling.
Resumo:
Motivation: Modelling the 3D structures of proteins can often be enhanced if more than one fold template is used during the modelling process. However, in many cases, this may also result in poorer model quality for a given target or alignment method. There is a need for modelling protocols that can both consistently and significantly improve 3D models and provide an indication of when models might not benefit from the use of multiple target-template alignments. Here, we investigate the use of both global and local model quality prediction scores produced by ModFOLDclust2, to improve the selection of target-template alignments for the construction of multiple-template models. Additionally, we evaluate clustering the resulting population of multi- and single-template models for the improvement of our IntFOLD-TS tertiary structure prediction method. Results: We find that using accurate local model quality scores to guide alignment selection is the most consistent way to significantly improve models for each of the sequence to structure alignment methods tested. In addition, using accurate global model quality for re-ranking alignments, prior to selection, further improves the majority of multi-template modelling methods tested. Furthermore, subsequent clustering of the resulting population of multiple-template models significantly improves the quality of selected models compared with the previous version of our tertiary structure prediction method, IntFOLD-TS.
Resumo:
Logistic models are studied as a tool to convert dynamical forecast information (deterministic and ensemble) into probability forecasts. A logistic model is obtained by setting the logarithmic odds ratio equal to a linear combination of the inputs. As with any statistical model, logistic models will suffer from overfitting if the number of inputs is comparable to the number of forecast instances. Computational approaches to avoid overfitting by regularization are discussed, and efficient techniques for model assessment and selection are presented. A logit version of the lasso (originally a linear regression technique), is discussed. In lasso models, less important inputs are identified and the corresponding coefficient is set to zero, providing an efficient and automatic model reduction procedure. For the same reason, lasso models are particularly appealing for diagnostic purposes.
Resumo:
In situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of a line of small cumulus clouds, using Radar and Lidar, as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than −8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed, near cloud top, temperatures (−7.5 °C). The role of mineral dust particles, consistent with concentrations observed near the surface, acting as high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L−1) could be produced by secondary ice particle production providing the observed small amount of primary ice (about 0.01 L−1) was present to initiate it. This emphasises the need to understand primary ice formation in slightly supercooled clouds. It is shown using simple calculations that the Hallett-Mossop process (HM) is the likely source of the secondary ice. Model simulations of the case study were performed with the Aerosol Cloud and Precipitation Interactions Model (ACPIM). These parcel model investigations confirmed the HM process to be a very important mechanism for producing the observed high ice concentrations. A key step in generating the high concentrations was the process of collision and coalescence of rain drops, which once formed fell rapidly through the cloud, collecting ice particles which caused them to freeze and form instant large riming particles. The broadening of the droplet size-distribution by collision-coalescence was, therefore, a vital step in this process as this was required to generate the large number of ice crystals observed in the time available. Simulations were also performed with the WRF (Weather, Research and Forecasting) model. The results showed that while HM does act to increase the mass and number concentration of ice particles in these model simulations it was not found to be critical for the formation of precipitation. However, the WRF simulations produced a cloud top that was too cold and this, combined with the assumption of continual replenishing of ice nuclei removed by ice crystal formation, resulted in too many ice crystals forming by primary nucleation compared to the observations and parcel modelling.
Resumo:
The Intergovernmental Panel on Climate Change fourth assessment report, published in 2007 came to a more confident assessment of the causes of global temperature change than previous reports and concluded that ‘it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica.’ Since then, warming over Antarctica has also been attributed to human influence, and further evidence has accumulated attributing a much wider range of climate changes to human activities. Such changes are broadly consistent with theoretical understanding, and climate model simulations, of how the planet is expected to respond. This paper reviews this evidence from a regional perspective to reflect a growing interest in understanding the regional effects of climate change, which can differ markedly across the globe. We set out the methodological basis for detection and attribution and discuss the spatial scales on which it is possible to make robust attribution statements. We review the evidence showing significant human-induced changes in regional temperatures, and for the effects of external forcings on changes in the hydrological cycle, the cryosphere, circulation changes, oceanic changes, and changes in extremes. We then discuss future challenges for the science of attribution. To better assess the pace of change, and to understand more about the regional changes to which societies need to adapt, we will need to refine our understanding of the effects of external forcing and internal variability
Resumo:
In 'Tales from Ovid' and 'War Music' respectively, Ted Hughes and Christopher Logue turned to classical epic as source material and a model for contemporary poetry. In this essay I consider the different ways in which they work with the original epic poems and how they rework them both textually and generically. In the process, I suggest, Hughes gives his readers an Ovid modeled on his own, vatic conception of Homer, while Logue reworks Homer in a manner that is essentially Ovidian.
Resumo:
Peat soils consist of poorly decomposed plant detritus, preserved by low decay rates, and deep peat deposits are globally significant stores in the carbon cycle. High water tables and low soil temperatures are commonly held to be the primary reasons for low peat decay rates. However, recent studies suggest a thermodynamic limit to peat decay, whereby the slow turnover of peat soil pore water may lead to high concentrations of phenols and dissolved inorganic carbon. In sufficient concentrations, these chemicals may slow or even halt microbial respiration, providing a negative feedback to peat decay. We document the analysis of a simple, one-dimensional theoretical model of peatland pore water residence time distributions (RTDs). The model suggests that broader, thicker peatlands may be more resilient to rapid decay caused by climate change because of slow pore water turnover in deep layers. Even shallow peat deposits may also be resilient to rapid decay if rainfall rates are low. However, the model suggests that even thick peatlands may be vulnerable to rapid decay under prolonged high rainfall rates, which may act to flush pore water with fresh rainwater. We also used the model to illustrate a particular limitation of the diplotelmic (i.e., acrotelm and catotelm) model of peatland structure. Model peatlands of contrasting hydraulic structure exhibited identical water tables but contrasting RTDs. These scenarios would be treated identically by diplotelmic models, although the thermodynamic limit suggests contrasting decay regimes. We therefore conclude that the diplotelmic model be discarded in favor of model schemes that consider continuous variation in peat properties and processes.
Resumo:
In mid-March 2005, a rare lower stratospheric polar vortex filamentation event was observed simultaneously by the JPL lidar at Mauna Loa Observatory, Hawaii, and by the EOS MLS instrument onboard the Aura satellite. The event coincided with the beginning of the spring 2005 final warming. On 16 March, the filament was observed by lidar around 0600 UT between 415 K and 455 K, and by MLS six hours earlier. It was seen on both the lidar and MLS profiles as a layer of enhanced ozone, peaking at 1.7 ppmv in a region where the climatological values are usually around or below 1 ppmv. Ozone profiles measured by lidar and MLS were compared to profiles from the Chemical Transport Model MIMOSA-CHIM. The agreement between lidar, MLS, and the model is excellent considering the difference in the sampling techniques. MLS was also able to identify the filament at another location north of Hawaii.
Resumo:
This study puts forward a method to model and simulate the complex system of hospital on the basis of multi-agent technology. The formation of the agents of hospitals with intelligent and coordinative characteristics was designed, the message object was defined, and the model operating mechanism of autonomous activities and coordination mechanism was also designed. In addition, the Ontology library and Norm library etc. were introduced using semiotic method and theory, to enlarge the method of system modelling. Swarm was used to develop the multi-agent based simulation system, which is favorable for making guidelines for hospital's improving it's organization and management, optimizing the working procedure, improving the quality of medical care as well as reducing medical charge costs.
Resumo:
Global warming is expected to enhance fluxes of fresh water between the surface and atmosphere, causing wet regions to become wetter and dry regions drier, with serious implications for water resource management. Defining the wet and dry regions as the upper 30% and lower 70% of the precipitation totals across the tropics (30° S–30° N) each month we combine observations and climate model simulations to understand changes in the wet and dry regions over the period 1850–2100. Observed decreases in precipitation over dry tropical land (1950–2010) are also simulated by coupled atmosphere–ocean climate models (−0.3%/decade) with trends projected to continue into the 21st century. Discrepancies between observations and simulations over wet land regions since 1950 exist, relating to decadal fluctuations in El Niño southern oscillation, the timing of which is not represented by the coupled simulations. When atmosphere-only simulations are instead driven by observed sea surface temperature they are able to adequately represent this variability over land. Global distributions of precipitation trends are dominated by spatial changes in atmospheric circulation. However, the tendency for already wet regions to become wetter (precipitation increases with warming by 3% K−1 over wet tropical oceans) and the driest regions drier (precipitation decreases of −2% K−1 over dry tropical land regions) emerges over the 21st century in response to the substantial surface warming.
Resumo:
For an increasing number of applications, mesoscale modelling systems now aim to better represent urban areas. The complexity of processes resolved by urban parametrization schemes varies with the application. The concept of fitness-for-purpose is therefore critical for both the choice of parametrizations and the way in which the scheme should be evaluated. A systematic and objective model response analysis procedure (Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm) is used to assess the fitness of the single-layer urban canopy parametrization implemented in the Weather Research and Forecasting (WRF) model. The scheme is evaluated regarding its ability to simulate observed surface energy fluxes and the sensitivity to input parameters. Recent amendments are described, focussing on features which improve its applicability to numerical weather prediction, such as a reduced and physically more meaningful list of input parameters. The study shows a high sensitivity of the scheme to parameters characterizing roof properties in contrast to a low response to road-related ones. Problems in partitioning of energy between turbulent sensible and latent heat fluxes are also emphasized. Some initial guidelines to prioritize efforts to obtain urban land-cover class characteristics in WRF are provided. Copyright © 2010 Royal Meteorological Society and Crown Copyright.