848 resultados para Native Vegetation Condition, Benchmarking, Bayesian Decision Framework, Regression, Indicators
Resumo:
Vegetation has a profound effect on flow and sediment transport processes in natural rivers, by increasing both skin friction and form drag. The increase in drag introduces a drag discontinuity between the in-canopy flow and the flow above, which leads to the development of an inflection point in the velocity profile, resembling a free shear layer. Therefore, drag acts as the primary driver for the entire canopy system. Most current numerical hydraulic models which incorporate vegetation rely either on simple, static plant forms, or canopy-scaled drag terms. However, it is suggested that these are insufficient as vegetation canopies represent complex, dynamic, porous blockages within the flow, which are subject to spatially and temporally dynamic drag forces. Here we present a dynamic drag methodology within a CFD framework. Preliminary results for a benchmark cylinder case highlight the accuracy of the method, and suggest its applicability to more complex cases.
Resumo:
BACKGROUND: Pain assessment in mechanically ventilated patients is challenging, because nurses need to decode pain behaviour, interpret pain scores, and make appropriate decisions. This clinical reasoning process is inherent to advanced nursing practice, but is poorly understood. A better understanding of this process could contribute to improved pain assessment and management. OBJECTIVE: This study aimed to describe the indicators that influence expert nurses' clinical reasoning when assessing pain in critically ill nonverbal patients. METHODS: This descriptive observational study was conducted in the adult intensive care unit (ICU) of a tertiary referral hospital in Western Switzerland. A purposive sample of expert nurses, caring for nonverbal ventilated patients who received sedation and analgesia, were invited to participate in the study. Data were collected in "real life" using recorded think-aloud combined with direct non-participant observation and brief interviews. Data were analysed using deductive and inductive content analyses using a theoretical framework related to clinical reasoning and pain. RESULTS: Seven expert nurses with an average of 7.85 (±3.1) years of critical care experience participated in the study. The patients had respiratory distress (n=2), cardiac arrest (n=2), sub-arachnoid bleeding (n=1), and multi-trauma (n=2). A total of 1344 quotes in five categories were identified. Patients' physiological stability was the principal indicator for making decision in relation to pain management. Results also showed that it is a permanent challenge for nurses to discriminate situations requiring sedation from situations requiring analgesia. Expert nurses mainly used working knowledge and patterns to anticipate and prevent pain. CONCLUSIONS: Patient's clinical condition is important for making decision about pain in critically ill nonverbal patients. The concept of pain cannot be assessed in isolation and its assessment should take the patient's clinical stability and sedation into account. Further research is warranted to confirm these results.
Resumo:
Given the cost constraints of the European health-care systems, criteria are needed to decide which genetic services to fund from the public budgets, if not all can be covered. To ensure that high-priority services are available equitably within and across the European countries, a shared set of prioritization criteria would be desirable. A decision process following the accountability for reasonableness framework was undertaken, including a multidisciplinary EuroGentest/PPPC-ESHG workshop to develop shared prioritization criteria. Resources are currently too limited to fund all the beneficial genetic testing services available in the next decade. Ethically and economically reflected prioritization criteria are needed. Prioritization should be based on considerations of medical benefit, health need and costs. Medical benefit includes evidence of benefit in terms of clinical benefit, benefit of information for important life decisions, benefit for other people apart from the person tested and the patient-specific likelihood of being affected by the condition tested for. It may be subject to a finite time window. Health need includes the severity of the condition tested for and its progression at the time of testing. Further discussion and better evidence is needed before clearly defined recommendations can be made or a prioritization algorithm proposed. To our knowledge, this is the first time a clinical society has initiated a decision process about health-care prioritization on a European level, following the principles of accountability for reasonableness. We provide points to consider to stimulate this debate across the EU and to serve as a reference for improving patient management.
Resumo:
Differences in health care utilization of immigrants 50 years of age and older relative to the native-born populations in eleven European countries are investigated. Negative binomial and zero-inflated Poisson regression are used to examine differences between immigrants and native-borns in number of doctor visits, visits to general practitioners, and hospital stays using the 2004 Survey of Health, Ageing, and Retirement in Europe database. In the pooled European sample and in some individual countries, older immigrants use from 13 to 20% more health services than native-borns after demographic characteristics are controlled. After controlling for the need for health care, differences between immigrants and native-borns in the use of physicians, but not hospitals, are reduced by about half. These are not changed much with the incorporation of indicators of socioeconomic status and extra insurance coverage. Higher country-level relative expenditures on health, paying physicians a fee-for-service, and physician density are associated with higher usage of physician services among immigrants.
Resumo:
La spectroscopie infrarouge (FTIR) est une technique de choix dans l'analyse des peintures en spray (traces ou bonbonnes de référence), grâce à son fort pouvoir discriminant, sa sensibilité, et ses nombreuses possibilités d'échantillonnage. La comparaison des spectres obtenus est aujourd'hui principalement faite visuellement, mais cette procédure présente des limitations telles que la subjectivité de la prise de décision car celle-ci dépend de l'expérience et de la formation suivie par l'expert. De ce fait, de faibles différences d'intensités relatives entre deux pics peuvent être perçues différemment par des experts, même au sein d'un même laboratoire. Lorsqu'il s'agit de justifier ces différences, certains les expliqueront par la méthode analytique utilisée, alors que d'autres estimeront plutôt qu'il s'agit d'une variabilité intrinsèque à la peinture et/ou à son vécu (par exemple homogénéité, sprayage, ou dégradation). Ce travail propose d'étudier statistiquement les différentes sources de variabilité observables dans les spectres infrarouges, de les identifier, de les comprendre et tenter de les minimiser. Le deuxième objectif principal est de proposer une procédure de comparaison des spectres qui soit davantage transparente et permette d'obtenir des réponses reproductibles indépendamment des experts interrogés. La première partie du travail traite de l'optimisation de la mesure infrarouge et des principaux paramètres analytiques. Les conditions nécessaires afin d'obtenir des spectres reproductibles et minimisant la variation au sein d'un même échantillon (intra-variabilité) sont présentées. Par la suite une procédure de correction des spectres est proposée au moyen de prétraitements et de sélections de variables, afin de minimiser les erreurs systématiques et aléatoires restantes, et de maximiser l'information chimique pertinente. La seconde partie présente une étude de marché effectuée sur 74 bonbonnes de peintures en spray représentatives du marché suisse. Les capacités de discrimination de la méthode FTIR au niveau de la marque et du modèle sont évaluées au moyen d'une procédure visuelle, et comparées à diverses procédures statistiques. Les limites inférieures de discrimination sont testées sur des peintures de marques et modèles identiques mais provenant de différents lots de production. Les résultats ont montré que la composition en pigments était particulièrement discriminante, à cause des étapes de corrections et d'ajustement de la couleur subies lors de la production. Les particularités associées aux peintures en spray présentes sous forme de traces (graffitis, gouttelettes) ont également été testées. Trois éléments sont mis en évidence et leur influence sur le spectre infrarouge résultant testée : 1) le temps minimum de secouage nécessaire afin d'obtenir une homogénéité suffisante de la peinture et, en conséquence, de la surface peinte, 2) la dégradation initiée par le rayonnement ultra- violet en extérieur, et 3) la contamination provenant du support lors du prélèvement. Finalement une étude de population a été réalisée sur 35 graffitis de la région lausannoise et les résultats comparés à l'étude de marché des bonbonnes en spray. La dernière partie de ce travail s'est concentrée sur l'étape de prise de décision lors de la comparaison de spectres deux-à-deux, en essayant premièrement de comprendre la pratique actuelle au sein des laboratoires au moyen d'un questionnaire, puis de proposer une méthode statistique de comparaison permettant d'améliorer l'objectivité et la transparence lors de la prise de décision. Une méthode de comparaison basée sur la corrélation entre les spectres est proposée, et ensuite combinée à une évaluation Bayesienne de l'élément de preuve au niveau de la source et au niveau de l'activité. Finalement des exemples pratiques sont présentés et la méthodologie est discutée afin de définir le rôle précis de l'expert et des statistiques dans la procédure globale d'analyse des peintures. -- Infrared spectroscopy (FTIR) is a technique of choice for analyzing spray paint speciments (i.e. traces) and reference samples (i.e. cans seized from suspects) due to its high discriminating power, sensitivity and sampling possibilities. The comparison of the spectra is currently carried out visually, but this procedure has limitations such as the subjectivity in the decision due to its dependency on the experience and training of the expert. This implies that small differences in the relative intensity of two peaks can be perceived differently by experts, even between analysts working in the same laboratory. When it comes to justifying these differences, some will explain them by the analytical technique, while others will estimate that the observed differences are mostly due to an intrinsic variability from the paint sample and/or its acquired characteristics (for example homogeneity, spraying, or degradation). This work proposes to statistically study the different sources of variability observed in infrared spectra, to identify them, understand them and try to minimize them. The second goal is to propose a procedure for spectra comparison that is more transparent, and allows obtaining reproducible answers being independent from the expert. The first part of the manuscript focuses on the optimization of infrared measurement and on the main analytical parameters. The necessary conditions to obtain reproducible spectra with a minimized variation within a sample (intra-variability) are presented. Following that a procedure of spectral correction is then proposed using pretreatments and variable selection methods, in order to minimize systematic and random errors, and increase simultaneously relevant chemical information. The second part presents a market study of 74 spray paints representative of the Swiss market. The discrimination capabilities of FTIR at the brand and model level are evaluated by means of visual and statistical procedures. The inferior limits of discrimination are tested on paints coming from the same brand and model, but from different production batches. The results showed that the pigment composition was particularly discriminatory, because of the corrections and adjustments made to the paint color during its manufacturing process. The features associated with spray paint traces (graffitis, droplets) were also tested. Three elements were identified and their influence on the resulting infrared spectra were tested: 1) the minimum shaking time necessary to obtain a sufficient homogeneity of the paint and subsequently of the painted surface, 2) the degradation initiated by ultraviolet radiation in an exterior environment, and 3) the contamination from the support when paint is recovered. Finally a population study was performed on 35 graffitis coming from the city of Lausanne and surroundings areas, and the results were compared to the previous market study of spray cans. The last part concentrated on the decision process during the pairwise comparison of spectra. First, an understanding of the actual practice among laboratories was initiated by submitting a questionnaire. Then, a proposition for a statistical method of comparison was advanced to improve the objectivity and transparency during the decision process. A method of comparison based on the correlation between spectra is proposed, followed by the integration into a Bayesian framework at both source and activity levels. Finally, some case examples are presented and the recommended methodology is discussed in order to define the role of the expert as well as the contribution of the tested statistical approach within a global analytical sequence for paint examinations.
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.
Resumo:
Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.
Resumo:
BACKGROUND: Shared Decision Making (SDM) is increasingly advocated as a model for medical decision making. However, there is still low use of SDM in clinical practice. High impact factor journals might represent an efficient way for its dissemination. We aimed to identify and characterize publication trends of SDM in 15 high impact medical journals. METHODS: We selected the 15 general and internal medicine journals with the highest impact factor publishing original articles, letters and editorials. We retrieved publications from 1996 to 2011 through the full-text search function on each journal website and abstracted bibliometric data. We included publications of any type containing the phrase "shared decision making" or five other variants in their abstract or full text. These were referred to as SDM publications. A polynomial Poisson regression model with logarithmic link function was used to assess the evolution across the period of the number of SDM publications according to publication characteristics. RESULTS: We identified 1285 SDM publications out of 229,179 publications in 15 journals from 1996 to 2011. The absolute number of SDM publications by journal ranged from 2 to 273 over 16 years. SDM publications increased both in absolute and relative numbers per year, from 46 (0.32% relative to all publications from the 15 journals) in 1996 to 165 (1.17%) in 2011. This growth was exponential (P < 0.01). We found fewer research publications (465, 36.2% of all SDM publications) than non-research publications, which included non-systematic reviews, letters, and editorials. The increase of research publications across time was linear. Full-text search retrieved ten times more SDM publications than a similar PubMed search (1285 vs. 119 respectively). CONCLUSION: This review in full-text showed that SDM publications increased exponentially in major medical journals from 1996 to 2011. This growth might reflect an increased dissemination of the SDM concept to the medical community.
Resumo:
Easter Island, a remote island in the Pacific Ocean, is currently primarily covered by grasslands, but palaeoecological studies have shown the former presence of different vegetation. Much of its original biota has been removed during the last two millennia, most likely by human activities, and little is known about the native flora.Macrofossil and pollen analyses of a sediment core from the Raraku crater lake have revealed the occurrence of a plant that is currently extinct from the island: Dianella cf. intermedia/adenanthera (Xanthorrhoeaceae), which grew and disappeared at the Raraku site long before human arrival. The occurrence of Dianella within the Raraku sedimentary sequence (between 9.4 and 5.4 cal. kyr B.P.) could have been linked to the existence of favorable palaeoenvironmental conditions (peatland rather than the present-day lacustrine environment) during the early to mid Holocene. This finding contributes new knowledge about indigenous plant diversity on Easter Island and reinforces the usefulness of further macrofossil and pollen analyses to identify native species on Easter Island and elsewhere.
Resumo:
After the restructuring process of the power supply industry, which for instance in Finland took place in the mid-1990s, free competition was introduced for the production and sale of electricity. Nevertheless, natural monopolies are found to be the most efficient form of production in the transmission and distribution of electricity, and therefore such companies remained franchised monopolies. To prevent the misuse of the monopoly position and to guarantee the rights of the customers, regulation of these monopoly companies is required. One of the main objectives of the restructuring process has been to increase the cost efficiency of the industry. Simultaneously, demands for the service quality are increasing. Therefore, many regulatory frameworks are being, or have been, reshaped so that companies are provided with stronger incentives for efficiency and quality improvements. Performance benchmarking has in many cases a central role in the practical implementation of such incentive schemes. Economic regulation with performance benchmarking attached to it provides companies with directing signals that tend to affect their investment and maintenance strategies. Since the asset lifetimes in the electricity distribution are typically many decades, investment decisions have far-reaching technical and economic effects. This doctoral thesis addresses the directing signals of incentive regulation and performance benchmarking in the field of electricity distribution. The theory of efficiency measurement and the most common regulation models are presented. The chief contributions of this work are (1) a new kind of analysis of the regulatory framework, so that the actual directing signals of the regulation and benchmarking for the electricity distribution companies are evaluated, (2) developing the methodology and a software tool for analysing the directing signals of the regulation and benchmarking in the electricity distribution sector, and (3) analysing the real-life regulatory frameworks by the developed methodology and further develop regulation model from the viewpoint of the directing signals. The results of this study have played a key role in the development of the Finnish regulatory model.
Resumo:
This paper presents the current state and development of a prototype web-GIS (Geographic Information System) decision support platform intended for application in natural hazards and risk management, mainly for floods and landslides. This web platform uses open-source geospatial software and technologies, particularly the Boundless (formerly OpenGeo) framework and its client side software development kit (SDK). The main purpose of the platform is to assist the experts and stakeholders in the decision-making process for evaluation and selection of different risk management strategies through an interactive participation approach, integrating web-GIS interface with decision support tool based on a compromise programming approach. The access rights and functionality of the platform are varied depending on the roles and responsibilities of stakeholders in managing the risk. The application of the prototype platform is demonstrated based on an example case study site: Malborghetto Valbruna municipality of North-Eastern Italy where flash floods and landslides are frequent with major events having occurred in 2003. The preliminary feedback collected from the stakeholders in the region is discussed to understand the perspectives of stakeholders on the proposed prototype platform.
Resumo:
In the past few decades, the rise of criminal, civil and asylum cases involving young people lacking valid identification documents has generated an increase in the demand of age estimation. The chronological age or the probability that an individual is older or younger than a given age threshold are generally estimated by means of some statistical methods based on observations performed on specific physical attributes. Among these statistical methods, those developed in the Bayesian framework allow users to provide coherent and transparent assignments which fulfill forensic and medico-legal purposes. The application of the Bayesian approach is facilitated by using probabilistic graphical tools, such as Bayesian networks. The aim of this work is to test the performances of the Bayesian network for age estimation recently presented in scientific literature in classifying individuals as older or younger than 18 years of age. For these exploratory analyses, a sample related to the ossification status of the medial clavicular epiphysis available in scientific literature was used. Results obtained in the classification are promising: in the criminal context, the Bayesian network achieved, on the average, a rate of correct classifications of approximatively 97%, whilst in the civil context, the rate is, on the average, close to the 88%. These results encourage the continuation of the development and the testing of the method in order to support its practical application in casework.
Resumo:
BACKGROUND: Frequent emergency department (ED) users meet several of the criteria of vulnerability, but this needs to be further examined taking into consideration all vulnerability's different dimensions. This study aimed to characterize frequent ED users and to define risk factors of frequent ED use within a universal health care coverage system, applying a conceptual framework of vulnerability. METHODS: A controlled, cross-sectional study comparing frequent ED users to a control group of non-frequent users was conducted at the Lausanne University Hospital, Switzerland. Frequent users were defined as patients with five or more visits to the ED in the previous 12 months. The two groups were compared using validated scales for each one of the five dimensions of an innovative conceptual framework: socio-demographic characteristics; somatic, mental, and risk-behavior indicators; and use of health care services. Independent t-tests, Wilcoxon rank-sum tests, Pearson's Chi-squared test and Fisher's exact test were used for the comparison. To examine the -related to vulnerability- risk factors for being a frequent ED user, univariate and multivariate logistic regression models were used. RESULTS: We compared 226 frequent users and 173 controls. Frequent users had more vulnerabilities in all five dimensions of the conceptual framework. They were younger, and more often immigrants from low/middle-income countries or unemployed, had more somatic and psychiatric comorbidities, were more often tobacco users, and had more primary care physician (PCP) visits. The most significant frequent ED use risk factors were a history of more than three hospital admissions in the previous 12 months (adj OR:23.2, 95%CI = 9.1-59.2), the absence of a PCP (adj OR:8.4, 95%CI = 2.1-32.7), living less than 5 km from an ED (adj OR:4.4, 95%CI = 2.1-9.0), and household income lower than USD 2,800/month (adj OR:4.3, 95%CI = 2.0-9.2). CONCLUSIONS: Frequent ED users within a universal health coverage system form a highly vulnerable population, when taking into account all five dimensions of a conceptual framework of vulnerability. The predictive factors identified could be useful in the early detection of future frequent users, in order to address their specific needs and decrease vulnerability, a key priority for health care policy makers. Application of the conceptual framework in future research is warranted.
Resumo:
OBJECTIVE: To review and update the conceptual framework, indicator content and research priorities of the Organisation for Economic Cooperation and Development's (OECD) Health Care Quality Indicators (HCQI) project, after a decade of collaborative work. DESIGN: A structured assessment was carried out using a modified Delphi approach, followed by a consensus meeting, to assess the suite of HCQI for international comparisons, agree on revisions to the original framework and set priorities for research and development. SETTING: International group of countries participating to OECD projects. PARTICIPANTS: Members of the OECD HCQI expert group. RESULTS: A reference matrix, based on a revised performance framework, was used to map and assess all seventy HCQI routinely calculated by the OECD expert group. A total of 21 indicators were agreed to be excluded, due to the following concerns: (i) relevance, (ii) international comparability, particularly where heterogeneous coding practices might induce bias, (iii) feasibility, when the number of countries able to report was limited and the added value did not justify sustained effort and (iv) actionability, for indicators that were unlikely to improve on the basis of targeted policy interventions. CONCLUSIONS: The revised OECD framework for HCQI represents a new milestone of a long-standing international collaboration among a group of countries committed to building common ground for performance measurement. The expert group believes that the continuation of this work is paramount to provide decision makers with a validated toolbox to directly act on quality improvement strategies.
Resumo:
Peer-reviewed