925 resultados para Nanostructured zinc oxide
Resumo:
Since its invention in the 1950s, semiconductor solar cell technology has evolved in great leaps and bounds. Solar power is now being considered as a serious leading contender for replacing fossil fuel based power generation. This article reviews the evolution and current state, and potential areas of near future research focus, of leading inorganic materials based solar cells, including bulk crystalline, amorphous thin-films, and nanomaterials based solar cells. Bulk crystalline silicon solar cells continue to dominate the solar power market, and continued efforts at device fabrication improvements, and device topology advancements are discussed. III-V compound semiconductor materials on c-Si for solar power generation are also reviewed. Developments in thin-film based solar cells are reviewed, with a focus on amorphous silicon, copper zinc tin sulfide, cadmium telluride, as well as nanostructured Cadmium telluride. Recent developments in the use of nano-materials for solar power generation, including silicon and gallium arsenide nanowires, are also reviewed.
Resumo:
A large deposit of ferromanganese oxide concretions has been found in the northern portion of Lake Ontario. The concretions occur mainly in the form of coatings on sand grains but manganese nodules are present at several localities. Mineralogically, the ferromanganese oxide phases are amorphous, and their Fe and Mn contents are similar to those in concretions from other environments. However, their Ni, Co, and Cu contents are significantly higher than those reported in previously described North American lacustrine ferromanganese concretions, and this may, in part, be a reflection of their probable low rates of accumulation.
Influence of pretreatment on corrosion behaviour of duplex zinc/polymer coatings on steel substrates
Resumo:
An investigation has been undertaken to determine the major factors influencing the corrosion resistance of duplex-zinc coatings on steel substrates.Premature failure of these systems has been attributed to the presence of defects such as craters and pinholes in the polymer film and debonding of the polymer film from the zinc substrate.Defects found on commercially produced samples have been carefully characterised using metallographic and scanning electron microscopy techniques. The influence of zinc substrate surface roughness, polymer film thickness and degassing of conversion coatings films on the incidence of defects has been determined.Pretreatments of the chromate, chromate-phosphate, non chromate, and alkali-oxide types were applied and the conversion coatings produced characterised with respect to their nature and composition. The effect of degassing on the properties of the films was also investigated. Electrochemical investigations were carried out to determine the effect of the presence of the eta or zeta phase as the outermost layer of the galvanized coating.Flow characteristics of polyester on zinc electroplated hot-dip continuous and batch galvanized and zinc sprayed samples were investigated using hot-stage microscopy. The effects of different pretreatments and degassing after conversion coating formation on flow characteristics were determined.Duplex coatings were subjected to the acetic acid salt spray test. The effect on adhesion was determined using an indentation debonding test and the results compared with those obtained using cross-cut/peel and pull-off tests. The locus of failure was determined using scanning electron microscopy and X-ray photoelectron spectroscopy techniques.
Resumo:
Isomerisation of α-pinene oxide to campholenic aldehyde was performed by immobilising zinc triflate based catalysts on the surface of a spinning disc reactor (SDR). Two types of catalyst have been studied and the influence of operating parameters such as rotational speed, feed flow rate and reaction temperature on conversion and selectivity towards campholenic aldehyde has been investigated in considerable detail. The findings of the study suggest that immobilising the catalyst on the reactor surface and performing the reaction in continuous mode has potential for achieving benefits of Green Chemical Technology (GCT).
Resumo:
A thermal evaporation method developed in the research group enables to grow and design several morphologies of semiconducting oxide nanostructures, such as Ga_2O_3, GeO_2 or Sb_2O_3, among others, and some ternary oxide compounds (ZnGa_2O_4, Zn_2GeO_4). In order to tailor physical properties, a successful doping of these nanostructures is required. However, for nanostructured materials, doping may affect not only their physical properties, but also their morphology during the thermal growth process. In this paper, we will show some examples of how the addition of impurities may result into the formation of complex structures, or changes in the structural phase of the material. In particular, we will consider the addition of Sn and Cr impurities into the precursors used to grow Ga_2O_3, Zn_2GeO_4 and Sb_2O_3 nanowires, nanorods or complex nanostructures, such as crossing wires or hierarchical structures. Structural and optical properties were assessed by electron microscopy (SEM and TEM), confocal microscopy, spatially resolved cathodoluminescence (CL), photoluminescence, and Raman spectroscopies. The growth mechanisms, the luminescence bands and the optical confinement in the obtained oxide nanostructures will be discussed. In particular, some of these nanostructures have been found to be of interest as optical microcavities. These nanomaterials may have applications in optical sensing and energy devices.
Resumo:
Layered metal oxides provide a single-step route to sheathed superlattices of atomic layers of a variety of inorganic materials, where the interlayer spacing and overall layered structure forms the most critical feature in the nanomaterials’ growth and application in electronics, health, and energy storage. We use a combination of computer simulations and experiments to describe the atomic-scale structure, dynamics and energetics of alkanethiol-intercalated layered vanadium oxide-based nanostructures. Molecular dynamics (MD) simulations identify the unusual substrate-constrained packing of the alkanethiol surfactant chains along each V2O5 (010) face that combines with extensive interdigitation between chains on opposing faces to maximize three-dimensional packing in the interlayer regions. The findings are supported by high resolution electron microscopy analyses of synthesized alkanethiol-intercalated vanadium oxide nanostructures, and the preference for this new interdigitated model is clarified using a large set of MD simulations. This dependency stresses the importance of organic–inorganic interactions in layered material systems, the control of which is central to technological applications of flexible hybrid nanomaterials.
Resumo:
The cyclic phosphazene trimers [N3P3(OC6H5)5OC5H4N·Ti(Cp)2Cl][PF6] (3), [N3P3(OC6H4CH2CN·Ti(Cp)2Cl)6][PF6]6 (4), [N3P3(OC6H4-But)5(OC6H4CH2CN·Ti(Cp)2Cl)][PF6] (5), [N3P3(OC6H5)5C6H4CH2CN·Ru(Cp)(PPh3)2][PF6] (6), [N3P3(OC6H5)5C6H4CH2CN·Fe(Cp)(dppe)][PF6] (7) and N3P3(OC6H5)5OC5H4N·W(CO)5 (8) were prepared and characterized. As a model, the simple compounds [HOC5H5N·Ti(Cp)2Cl]PF6 (1) and [HOC6H4CH2CN·Ti(Cp)2Cl]PF6 (2) were also prepared and characterized. Pyrolysis of the organometallic cyclic trimers in air yields metallic nanostructured materials, which according to transmission and scanning electron microscopy (TEM/SEM), energy-dispersive X-ray microanalysis (EDX), and IR data, can be formulated as either a metal oxide, metal pyrophosphate or a mixture in some cases, depending on the nature and quantity of the metal, characteristics of the organic spacer and the auxiliary substituent attached to the phosphorus cycle. Atomic force microscopy (AFM) data indicate the formation of small island and striate nanostructures. A plausible formation mechanism which involves the formation of a cyclomatrix is proposed, and the pyrolysis of the organometallic cyclic phosphazene polymer as a new and general method for obtaining metallic nanostructured materials is discussed.
Resumo:
We present a comparative structural–vibrational study of nanostructured systems of V2O5: nano-urchin (VONURs) which are spherical structures composed of a radially oriented array of VOx nanotubes (VOx-NTs) with a volumetric density of ∼40 sr–1, and vanadium oxide nanorods (VOx-NRDs) with an average length of ∼100 nm. The Raman scattering spectrum of the nano-urchin exhibits a band at 1014 cm–1 related to the distorted gamma conformation of the vanadium pentoxide (γ-V5+). The infrared vibrational spectra of the nanorods sample also exhibit a distorted laminar V2O5 structure with evidence observed for quadravalent V4+ species at 921 cm–1.
Resumo:
Energy storage technologies are crucial for efficient utilization of electricity. Supercapacitors and rechargeable batteries are of currently available energy storage systems. Transition metal oxides, hydroxides, and phosphates are the most intensely investigated electrode materials for supercapacitors and rechargeable batteries due to their high theoretical charge storage capacities resulted from reversible electrochemical reactions. Their insulating nature, however, causes sluggish electron transport kinetics within these electrode materials, hindering them from reaching the theoretical maximum. The conductivity of these transition metal based-electrode materials can be improved through three main approaches; nanostructuring, chemical substitution, and introducing carbon matrices. These approaches often lead to unique electrochemical properties when combined and balanced.
Ethanol-mediated solvothermal synthesis we developed is found to be highly effective for controlling size and morphology of transition metal-based electrode materials for both pseudocapacitors and batteries. The morphology and the degree of crystallinity of nickel hydroxide are systematically changed by adding various amounts glucose to the solvothermal synthesis. Nickel hydroxide produced in this manner exhibited increased pseudocapacitance, which is partially attributed to the increased surface area. Interestingly, this morphology effect on cobalt doped-nickel hydroxide is found to be more effective at low cobalt contents than at high cobalt contents in terms of improving the electrochemical performance.
Moreover, a thin layer of densely packed nickel oxide flakes on carbon paper substrate was successfully prepared via the glucose-assisted solvothermal synthesis, resulting in the improved electrode conductivity. When reduced graphene oxide was used for conductive coating on as-prepared nickel oxide electrode, the electrode conductivity was only slightly improved. This finding reveals that the influence of reduced graphene oxide coating, increasing the electrode conductivity, is not that obvious when the electrode is already highly conductive to begin with.
We were able to successfully control the interlayer spacing and reduce the particle size of layered titanium hydrogeno phosphate material using our ethanol-mediated solvothermal reaction. In layered structure, interlayer spacing is the key parameter for fast ion diffusion kinetics. The nanosized layered structure prepared via our method, however, exhibited high sodium-ion storage capacity regardless of the interlayer spacing, implying that interlayer space may not be the primary factor for sodium-ion diffusion in nanostructured materials, where many interstitials are available for sodium-ion diffusion.
Our ethanol-mediated solvothermal reaction was also effective for synthesis of NaTi2(PO4)3 nanoparticles with uniform size and morphology, well connected by a carbon nanotube network. This composite electrode exhibited high capacity, which is comparable to that in aqueous electrolyte, probably due to the uniform morphology and size where the preferable surface for sodium-ion diffusion is always available in all individual particles.
Fundamental understandings of the relationship between electrode microstructures and electrochemical properties discussed in this dissertation will be important to design high performance energy storage system applications.
Resumo:
The CRP-2/2A core, drilled in western McMurdo Sound in October and November 1998, penetrated 624 m of Quaternary. Pliocene, lower Miocene, and Oligocene glacigenic sediments. The palaeoclimatic record of CRP-2/2A is examined using major element analyses of bulk core samples of fine grained sediments (mudstones and siltstones) and the Chemical Index of Alteration (CIA) of Nesbitt & Young (1982). The CIA is calculated from the relative abundances of AI, K, Ca, and Na oxides, and its magnitude increases as the effects of chemical weathering increase. However, changes in sediment provenance can also affect the CIA, and provenance changes are recorded by shifts in the Al2O3/TiO2 ratios and the Nb contents of these CRP-2/2A mudstones. Relatively low CIA values (40-50) occur throughout the CRP-2/2A sequence, whereas the Al2O3/TiO2 ratio decreases upsection. The major provenance change is an abrupt onset of McMurdo Volcanic Group detritus at ~300 mbsf and is best characterized by a rapid increase in Nb content in the sediments. This provenance shift is not evident in the CIA record, suggesting that a contribution from the Ferrar Dolerite to the older sediments was replaced by an input of McMurdo Volcanic Group material in the younger sediments. If this is true, then the relatively uniform CIA values indicate relatively consistent palaeoweathering intensities throughout the Oligocene and early Miocene in the areas that supplied sediment to CRP-2/2A.
Resumo:
Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes. We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths. We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process. We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.