879 resultados para Nano-packaging
Resumo:
La società civile pone oggi particolare attenzione al tema della sostenibilità ambientale, di qui la crescente necessità di progettare e sviluppare imballaggi ecosostenibili e/o biodegradabili con elevate prestazioni. I materiali polimerici, in particolare i poliesteri, presentano sicuramente una valida soluzione. Un monomero proveniente da fonti rinnovabili che consente la realizzazione di polimeri dalle eccellenti proprietà meccaniche e barriera è l'acido 2,5-furandicarbossilico. Tuttavia, i poliesteri furan-based non possiedono le caratteristiche di biodegradabilità desiderate, inoltre sono materiali duri e fragili e quindi non idonei per l’imballaggio flessibile. In tale contesto si inserisce il presente lavoro di tesi che ha come scopo la realizzazione di un nuovo poli(estere uretano) multiblocco a base di acido 2,5-furandicarbossilico, caratterizzato da proprietà migliorate rispetto all’omopolimero di partenza (poli(esametilene 2,5-furanoato)), il quale presenti una maggiore velocità di degradazione, combinata con un comportamento meccanico elastomerico, e eccellenti proprietà barriera. Per questo sono state prese in considerazione due diverse unità copolimeriche: una cosiddetta “hard” il poli(esametilene 2,5-furanoato) e l’altra “soft” il poli(trietilene 2,5-furanoato). L’alternanza di queste due porzioni ha permesso di realizzare un copolimero tenace, con un’elevata temperatura di fusione (dovuta all’elevato grado di cristallinità del segmento hard), e con un basso modulo elastico ed un elevato allungamento a rottura (tipici invece del segmento soft). I risultati ottenuti hanno evidenziato come la copolimerizzazione abbia aumentato la flessibilità del materiale, la velocità di degradazione, entrambi grazie al ridotto grado di cristallinità. Infine il copolimero presenta eccellenti proprietà barriera, grazie alla presenza di una fase bidimensionale ordinata (mesofase).
Resumo:
Nell'ambito della medicina bioelettronica vi è un grande interesse nello sviluppo di bioelettrodi elastici ad interfaccia nanostrutturata per la rilevazione dei segnali elettrici del sistema nervoso. Uno dei materiali organici più performanti è il polimero conduttivo 3,4-polietilenediossitiofene (PEDOT), drogato col polianione polistirene sulfonato (PSS) a formare il PEDOT:PSS nanocomposito. Questo composto tende però a perdere le proprietà elettrochimiche di partenza quando sottoposto a stress meccanico. Per ottenere una caratterizzazione del materiale è stata esaminata la spettroscopia di impedenza elettrochimica (EIS) come funzione della frequenza temporale di alcuni elettrodi d' oro rivestiti di PEDOT:PSS elettrodepositato, utilizzando dei substrati microfabbricati. Sono stati inoltre eseguiti confronti con bioelettrodi PEDOT:PSS con l'aggiunta di glicole polietilenico (PEG) in fase di deposizione elettrochimica, un plastificante che migliora le proprietà elastiche dei bioelettrodi. Al fine di ottenere una caratterizzazione topologica dei dispositivi, si è fatto uso di un Microscopio a Forza Atomica (AFM). Infine, è stata elaborata una metodologia per caratterizzare i dispositivi sotto l'azione di uno stress meccanico molto ricorrente nelle applicazioni mediche. Si è constato che gli spettri di impedenza dei bioelettrodi possono essere ragionevolmente descritti da un circuito equivalente formato da una resistenza in serie ad una capacità. I parametri ricavati tramite questo modello sembrano suggerire inoltre un'analogia quantitativa nel comportamento del PEDOT:PSS e del PEDOT:PSS:PEG.
Resumo:
L’incremento mondiale nel consumo di materie plastiche registrato negli ultimi ottant’anni, ha portato all’insorgere di diverse problematiche ambientali, legate allo smaltimento dei rifiuti e all’eccessivo sfruttamento dei giacimenti petroliferi. La situazione risulta particolarmente difficoltosa nel settore di massimo utilizzo delle plastiche: il food packaging. Una delle possibili soluzioni è l’utilizzo di bioplastiche, soprattutto quelle derivanti da biomassa. Fra queste, di particolare interesse sono i biopolimeri a base di acido 2,5-furandicarbossilico (FDCA), come il poli(butilene furanoato) (PBF) dotato di ottime proprietà meccaniche, termiche e barriera, ma caratterizzato al contempo da eccessiva rigidità. Il presente lavoro di Tesi Magistrale si propone di modulare le proprietà del PBF, mediante copolimerizzazione con acido isoftalico, monomero biobased e in grado di conferire buone proprietà barriera al materiale finale. I due monomeri aromatici, in diversa percentuale molare, sono stati polimerizzati con 1,4-butandiolo, ottenendo un sistema copolimerico poli(butilene furanoato-co-isoftalato) 100% biobased. I materiali sintetizzati sono stati sottoposti a caratterizzazione molecolare (1H-NMR, 13C-NMR e GPC), termica (TGA e DSC), diffrattometrica (WAXS), analisi meccanica e prove barriera. Essi hanno mostrato ottime proprietà meccaniche, con riduzione del modulo elastico e aumento dell’allungamento a rottura all’aumentare della percentuale di unità isoftalica impiegata, ottima stabilità termica (oltre 350°C) e proprietà barriera confrontabili con quelle dei polimeri di derivazione petrolchimica, attualmente utilizzati nel campo degli imballaggi. I risultati ottenuti mostrano come la copolimerizzazione abbia permesso di migliorare le proprietà non soddisfacenti del PBF, senza andare a detrimento di quelle già buone, nell’ottica dell’applicazione finale.
Resumo:
Negli ultimi decenni i settori farmaceutico e cosmeceutico hanno aumentato costantemente gli investimenti nella ricerca, in modo da garantire soluzioni terapeutiche ad uno spettro di patologie più ampio possibile. È emersa quindi la necessità di migliorare la veicolazione e l’efficacia dei farmaci, ovvero di sviluppare “Drug Delivery Systems” innovativi. Kerline srl si è affacciata a questo specifico mercato, proponendo l’utilizzo di un materiale cheratinoso, estratto da lana e solubile in ambiente acquoso, per la produzione di sistemi micro e nanoparticellari caricati con composti lipofili. Durante lo svolgimento del tirocinio, sono state ottimizzate le procedure di estrazione di due diverse forme di cheratina, una ad alto peso molecolare e una idrolizzata. Queste sono state poi caricate con alcuni principi attivi (acido azelaico, α-tocoferolo acetato e tioconazolo) e le particelle ottenute sono state studiate tramite varie tecniche (DLS/PALS, SEM, Spettroscopia FTIR-ATR, UV-Vis e NMR). Complessivamente, le sospensioni colloidali ottenute sono dotate di buona stabilità sia nel tempo che dal punto di vista termico e mostrano quindi l’ottima compatibilità della cheratina con composti di varia natura.
Resumo:
Questo progetto di tesi sperimentale è incentrato sulla sintesi di un copolimero multiblocco alifatico/aromatico a partire da reagenti aventi origine da fonti rinnovabili. L’applicazione proposta per il prodotto è nell’ambito del packaging sostenibile. E’ stato prima sintetizzato il poli(pentametilene furanoato) idrossil-terminato (PPeF-OH) a partire dall’acido 2,5-furandicarbossilico; esso è stato poi sottoposto ad una reazione di estensione di catena con acido poli-L-lattico (PLLA) parzialmente depolimerizzato. L’innovativa strategia di sintesi utilizzata è in linea con i principi della green chemistry, partendo da building block bio-based ed evitando l’uso di solventi. Il copolimero finale, definito P(LLA50PeF50)-CE, è stato caratterizzato dal punto di vista molecolare, strutturale e termico attraverso, rispettivamente, analisi NMR e GPC, WAXS, TGA e DSC. Sono state anche effettuate prove a trazione, test delle proprietà barriera e valutazione della compostabilità. I risultati dimostrano che la stabilità termica del PLLA è stata migliorata, determinando anche un allargamento della finestra di processabilità del materiale; la rigidità e la fragilità del PLLA sono state ridotte, rendendo il nuovo materiale idoneo alla realizzazione di film per imballaggi flessibili. La permeabilità all’ossigeno del PLLA è stata migliorata del 40% circa e un analogo miglioramento è stato riscontrato anche rispetto all’anidride carbonica. Infine, la compostabilità del PLLA non è stata compromessa.
Resumo:
Negli ultimi decenni i polimeri coniugati, grazie alla loro peculiarità di essere dei semiconduttori organici, hanno attirato l’attenzione della ricerca scientifica, e tra questi composti rientrano i politiofeni. Versatilità, robustezza chimica strutturale e fluorescenza sono alcune delle proprietà che caratterizzano tali composti e che hanno permesso di esplorare nuovi materiali da un punto di vista scientifico e tecnologico. Recentemente molto interessanti sono risultate essere le nanoparticelle politiofeniche poiché permettono di modulare le proprietà chimico-fisiche dei relativi polimeri, ampliandone le potenzialità a trovare applicazione in molteplici dispositivi elettronici, tra cui le celle solari (CS) organiche. Infatti, molto attivo è l’interesse della comunità scientifica per ottimizzare questi dispositivi ricercando nuovi prodotti che soddisfino diversi requisiti, come riduzione dell’impatto ambientale, la facilità di preparazione e compatibilità con substrati flessibili. In tale contesto, uno degli obiettivi della ricerca attualmente si focalizza sulla preparazione di nuovi accettori da usare in CS organiche alternativi ai derivati fullerenici, i quali presentano diversi svantaggi. Alla luce dei più recenti risultati si è visto che i politiofeni push-pull, caratterizzati dall’alternanza di gruppi accettori (A) e gruppi donatori (D), hanno una notevole potenzialità a rimpiazzare tali materiali e ad essere usati come accettori non-fullerenici. Infatti, questi hanno permesso di ottenere buoni risultati in termini di conversioni ed efficienze delle celle fotovoltaiche. Lo scopo di questo lavoro di tesi è sintetizzare sei nuovi polimeri a base tiofenica (quattro con sequenza A-D e due con sequenza A-A) per studiarne le possibili applicazioni come materiali accettori non-fullerenici e la loro organizzazione in strutture ordinate di nanoparticelle.
Resumo:
PLA is a bio-based polymer that is obtained from renewable resources and it is very promising for a sustainable packaging manufacturing. However, its gas and vapour barrier properties are not enough to comply with the requirements of MAP packaging of fresh foods, which need specific concentration of water and oxygen to avoid spoilage and to keep the organoleptic properties unaltered throughout their shelf-life. The use of waxes from natural renewable sources such as plants (e.g., candelilla wax, carnauba wax, rice bran wax, sunflower wax) or animals (e.g., beeswax) could tackle down the permeation of water vapour through the packaging without affecting its bio-based content. The core of this work is developing wax-based coatings with enhanced thermo-mechanical properties so that they can undergo thermoforming and a proper adhesion to the PLA substrate can be ensured. Chemical modifications and crosslinking of waxes are performed to produce wax-based alkyd resins. The synthesised materials are characterised both by DSC and FTIR. Films of the wax-based alkyds are produced in order to assess their water vapour permeability.
Resumo:
Il presente progetto di Tesi ha come obiettivo il design di nuovi copolimeri statistici bio-based, caratterizzati da idonee proprietà meccaniche e barriera per impieghi come film sottili nell’imballaggio alimentare. I materiali sintetizzati appartengono alla classe dei poliesteri alifatici, caratterizzati dalla facilità di sintesi in assenza di solventi, relativamente economici, caratterizzati da proprietà modulabili in funzione della struttura chimica. Come omopolimero di partenza è stato scelto il poli(butilene trans-1,4-cicloesanoato) (PBCE), un poliestere potenzialmente bio-based con elevata resistenza ad alte temperature, umidità, radiazioni UV e buone proprietà meccaniche e barriera, e, benchè non ancora disponibile in commercio, molto interessante. Esso risulta troppo rigido per la realizzazione di film flessibili. Il PBCE è stato quindi copolimerizzato introducendo l’(1R,3S)-(+)-Acido Canforico, un monomero bio-based ottenibile dalla canfora. L’obiettivo del lavoro è modulare la cristallinità, le proprietà termiche, meccaniche e barriera dell’omopolimero di partenza. Dopo la sintesi, effettuata mediante policondensazione in massa a due stadi, tali copolimeri sono stati sottoposti a caratterizzazioni molecolari, termiche e meccaniche per valutare l’effetto dell’introduzione di comonomero nella catena macromolecolare del PBCE.
Resumo:
The increasing environmental global regulations have directed scientific research towards more sustainable materials, even in the field of composite materials for additive manufacturing. In this context, the presented research is devoted to the development of thermoplastic composites for FDM application with a low environmental impact, focusing on the possibility to use wastes from different industrial processes as filler for the production of composite filaments for FDM 3D printing. In particular carbon fibers recycled by pyro-gasification process of CFRP scraps were used as reinforcing agent for PLA, a biobased polymeric matrix. Since the high value of CFs, the ability to re-use recycled CFs, replacing virgin ones, seems to be a promising option in terms of sustainability and circular economy. Moreover, wastes from different agricultural industries, i.e. wheat and rice production processes, were valorised and used as biofillers for the production of PLA-biocomposites. The integration of these agricultural wastes into PLA bioplastic allowed to obtain biocomposites with improved eco-sustainability, biodegradability, lightweight, and lower cost. Finally, the study of novel composites for FDM was extended towards elastomeric nanocomposite materials, in particular TPU reinforced with graphene. The research procedure of all projects involves the optimization of production methods of composite filaments with a particular attention on the possible degradation of polymeric matrices. Then, main thermal properties of 3D printed object are evaluated by TGA, DSC characterization. Additionally, specific heat capacity (CP) and Coefficient of Linear Thermal Expansion (CLTE) measurements are useful to estimate the attitude of composites for the prevention of typical FDM issues, i.e. shrinkage and warping. Finally, the mechanical properties of 3D printed composites and their anisotropy are investigated by tensile test using distinct kinds of specimens with different printing angles with respect to the testing direction.
Resumo:
The study focused on the analysis of the state of the art of active packaging and on the development of an innovative active packaging system for food application based on the use of nanocellulose matrix embedded with essential oils. The solubility and diffusivity of thyme, cinnamon and oregano essential oils in three nanocellulose films, endowed with different carboxymethylation degree, were analysed. The antimicrobial and antioxidant activity of those films was also analyzed. Firstly, the activity against model pathogenic bacteria was tested and the minimum inhibitory concentration of each oil was determined (0.37 – 0.68 mg/mg of matrix). This initial validation was then followed by experimental settings aimed at testing the system directly on clamshell type packed raspberries. It was observed that thyme and oregano essential oils were more effective in maintaining firmness and reduce weight loss than cinnamon essential oil or controls, through 12 days storage at 1ºC. From the results obtained, it is possible to conclude that the dispersion of thyme and oregano essential oils in nanocellulose matrix is a promising technology to improve shelf-life of raspberries or other fresh fruits.
Resumo:
The central aim of this dissertation is to introduce innovative methods, models, and tools to enhance the overall performance of supply chains responsible for handling perishable products. This concept of improved performance encompasses several critical dimensions, including enhanced efficiency in supply chain operations, product quality, safety, sustainability, waste generation minimization, and compliance with norms and regulations. The research is structured around three specific research questions that provide a solid foundation for delving into and narrowing down the array of potential solutions. These questions primarily concern enhancing the overall performance of distribution networks for perishable products and optimizing the package hierarchy, extending to unconventional packaging solutions. To address these research questions effectively, a well-defined research framework guides the approach. However, the dissertation adheres to an overarching methodological approach that comprises three fundamental aspects. The first aspect centers on the necessity of systematic data sampling and categorization, including identifying critical points within food supply chains. The data collected in this context must then be organized within a customized data structure designed to feed both cyber-physical and digital twins to quantify and analyze supply chain failures with a preventive perspective.
Resumo:
The impellent global environmental issues related to plastic materials can be addressed by following two different approaches: i) the development of synthetic strategies towards novel bio-based polymers, deriving from biomasses and thus identifiable as CO2-neutral materials, and ii) the development of new plastic materials, such as biocomposites, which are bio-based and biodegradable and therefore able to counteract the accumulation of plastic waste. In this framework, this dissertation presents extensive research efforts have been devoted to the synthesis and characterization of polyesters based on various bio-based monomers, including ω-pentadecalactone, vanillic acid, 2,5-furan dicarboxylic acid, and 5-hydroxymethylfurfural. With the aim of achieving high molecular weight polyesters, different synthetic strategies have been used as melt polycondensation, enzymatic polymerization, ring-opening polymerization and chain extension reaction. In particular, poly(ethylene vanillate) (PEV), poly(ω-pentadecalactone) (PPDL), poly(ethylene vanillate-co-pentadecalactone) (P(EV-co-PDL)), poly(2-hydroxymethyl 5-furancarboxylate) (PHMF), poly(ethylene 2,5-furandicarboxylate) (PEF) with different amount of diethylene glycol (DEG) unit amount, poly(propylene 2,5-furandicarboxylate) (PPF), poly(hexamethylene 2,5-furandicarboxylate), (PHF) have been prepared and extensively characterized. To improve the lacks of poly(hydroxybutyrate-co-valerate) (PHBV), its minimal formulations with natural additives and its blending with medium chain length PHAs (mcl-PHAs) have been tested. Additionally, this dissertation presents new biocomposites based on polylactic acid (PLA), poly(butylene succinate) (PBS), and PHBV, which are polymers both bio-based and biodegradable. To maintain their biodegradability only bio-fillers have been taken into account as reinforcing agents. Moreover, the commitment to sustainability has further limited the selection and led to the exclusive use of agricultural waste as fillers. Detailly, biocomposites have been obtained and discussed by using the following materials: PLA and agro-wastes like tree pruning, potato peels, and hay leftovers; PBS and exhausted non-compliant coffee green beans; PHBV and industrial starch extraction residues.