774 resultados para Named entity recognition
Resumo:
The Aptian Barbalha Formation represents the first unit of the post-rift sequence of the Araripe Basin and crops out at the slopes of the Aranpe plateau in the eastern part ot Aranpe Basin. The unit has also been named Kio da Batateira Formation, but this name is here used in its original definition as Batateira Beds, an interval of great lateral continuity and characterized by the presence of bituminous shales of the Alagoas Stage (P-270 palynological biozone). This paper presents the results of a stratigraphic analysis carried out along the outcrop belt in order to establish the facies architecture and to interpret deposicional environments of the siliciclastic Barbalha Formation. Detailed stratigraphic vertical sections were measured and correlated. They allowed the recognition of two depositional sequences characterized by fining upward arrangement of facies, beginning with fluvial deposits and ending with lacustrine deposits at their tops. The end of the first cycle is represented by black shales and brecciated limestones of the Batateira Beds that record a geologic event of regional magnitude and serve as meaningful long-distance stratigraphic mark. The second deposicional sequence overlies disconformably the Batateira Beds and begins with clast-supported conglomerates, which are covered by a succession of fluvial sandstones and minor intervals of pelitic rocks. The sandstone content diminishes towards the top and the upper part of the unit is characterized by the presence of ostracode-rich green shales. The Barbalha Formation is conformably overlaid by Late Aptian lacustrine limestones belonging to the Crato Member of the Santana Formation.
Resumo:
Biometrics is one of the biggest tendencies in human identification. The fingerprint is the most widely used biometric. However considering the automatic fingerprint recognition a completely solved problem is a common mistake. The most popular and extensively used methods, the minutiae-based, do not perform well on poor-quality images and when just a small area of overlap between the template and the query images exists. The use of multibiometrics is considered one of the keys to overcome the weakness and improve the accuracy of biometrics systems. This paper presents the fusion of a minutiae-based and a ridge-based fingerprint recognition method at rank, decision and score level. The fusion techniques implemented leaded to a reduction of the Equal Error Rate by 31.78% (from 4.09% to 2.79%) and a decreasing of 6 positions in the rank to reach a Correct Retrieval (from rank 8 to 2) when assessed in the FVC2002-DB1A database. © 2008 IEEE.
Resumo:
The results obtained through biological research usually need to be analyzed using computational tools, since manual analysis becomes unfeasible due to the complexity and size of these results. For instance, the study of quasispecies frequently demands the analysis of several, very lengthy sequences of nucleotides and amino acids. Therefore, bioinformatics tools for the study of quasispecies are constantly being developed due to different problems found by biologists. In the present study, we address the development of a software tool for the evaluation of population diversity in quasispecies. Special attention is paid to the localization of genome regions prone to changes, as well as of possible hot spots.
Resumo:
To simplify computer management, several system administrators are adopting advanced techniques to manage software configuration on grids, but the tight coupling between hardware and software makes every PC an individual managed entity, lowering the scalability and increasing the costs to manage hundreds or thousands of PCs. This paper discusses the feasibility of a distributed virtual machine environment, named Flexlab: a new approach for computer management that combines virtualization and distributed system architectures as the basis of a management system. Flexlab is able to extend the coverage of a computer management solution beyond client operating system limitations and also offers a convenient hardware abstraction, decoupling software and hardware, simplifying computer management. The results obtained in this work indicate that FlexLab is able to overcome the limitations imposed by the coupling between software and hardware, simplifying the management of homogeneous and heterogeneous grids. © 2009 IEEE.
Resumo:
Incluye Bibliografía
Resumo:
The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.
ANN statistical image recognition method for computer vision in agricultural mobile robot navigation
Resumo:
The main application area in this project, is to deploy image processing and segmentation techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. Thereby, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for image recognition. Hence, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave computational platforms, along with the application of customized Back-propagation Multilayer Perceptron (MLP) algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of segmented images in which reasonably accurate results were obtained. © 2010 IEEE.
Resumo:
In this project, the main focus is to apply image processing techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained. ©2010 IEEE.
Resumo:
Intrusion detection systems that make use of artificial intelligence techniques in order to improve effectiveness have been actively pursued in the last decade. Neural networks and Support Vector Machines have been also extensively applied to this task. However, their complexity to learn new attacks has become very expensive, making them inviable for a real time retraining. In this research, we introduce a new pattern classifier named Optimum-Path Forest (OPF) to this task, which has demonstrated to be similar to the state-of-the-art pattern recognition techniques, but extremely more efficient for training patterns. Experiments on public datasets showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, as well as allow the algorithm to learn new attacks faster than the other techniques. © 2011 IEEE.
Resumo:
Musical genre classification has been paramount in the last years, mainly in large multimedia datasets, in which new songs and genres can be added at every moment by anyone. In this context, we have seen the growing of musical recommendation systems, which can improve the benefits for several applications, such as social networks and collective musical libraries. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for musical genre classification, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster for some applications. Experiments in two public datasets were conducted against Support Vector Machines and a Bayesian classifier to show the validity of our work. In addition, we have executed an experiment using very recent hybrid feature selection techniques based on OPF to speed up feature extraction process. © 2011 International Society for Music Information Retrieval.
Resumo:
Voice-based user interfaces have been actively pursued aiming to help individuals with motor impairments, providing natural interfaces to communicate with machines. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for voice-based robot interface, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster. Experiments were conducted against Support Vector Machines, Neural Networks and a Bayesian classifier to show the OPF robustness. The proposed architecture provides high accuracy rates allied with low computational times. © 2012 IEEE.
Resumo:
Dental recognition is very important for forensic human identification, mainly regarding the mass disasters, which have frequently happened due to tsunamis, airplanes crashes, etc. Algorithms for automatic, precise, and robust teeth segmentation from radiograph images are crucial for dental recognition. In this work we propose the use of a graph-based algorithm to extract the teeth contours from panoramic dental radiographs that are used as dental features. In order to assess our proposal, we have carried out experiments using a database of 1126 tooth images, obtained from 40 panoramic dental radiograph images from 20 individuals. The results of the graph-based algorithm was qualitatively assessed by a human expert who reported excellent scores. For dental recognition we propose the use of the teeth shapes as biometric features, by the means of BAS (Bean Angle Statistics) and Shape Context descriptors. The BAS descriptors showed, on the same database, a better performance (EER 14%) than the Shape Context (EER 20%). © 2012 IEEE.
Resumo:
In this paper we shed light over the problem of landslide automatic recognition using supervised classification, and we also introduced the OPF classifier in this context. We employed two images acquired from Geoeye-MS satellite at March-2010 in the northwest (high steep areas) and north sides (pipeline area) covering the area of Duque de Caxias city, Rio de Janeiro State, Brazil. The landslide recognition rate has been assessed through a cross-validation with 10 runnings. In regard to the classifiers, we have used OPF against SVM with Radial Basis Function for kernel mapping and a Bayesian classifier. We can conclude that OPF, Bayes and SVM achieved high recognition rates, being OPF the fastest approach. © 2012 IEEE.
Resumo:
Grinding is a parts finishing process for advanced products and surfaces. However, continuous friction between the workpiece and the grinding wheel causes the latter to lose its sharpness, thus impairing the grinding results. This is when the dressing process is required, which consists of sharpening the worn grains of the grinding wheel. The dressing conditions strongly affect the performance of the grinding operation; hence, monitoring them throughout the process can increase its efficiency. The objective of this study was to estimate the wear of a single-point dresser using intelligent systems whose inputs were obtained by the digital processing of acoustic emission signals. Two intelligent systems, the multilayer perceptron and the Kohonen neural network, were compared in terms of their classifying ability. The harmonic content of the acoustic emission signal was found to be influenced by the condition of dresser, and when used to feed the neural networks it is possible to classify the condition of the tool under study.
Resumo:
Background: Orbital infection is an uncommon devastating infection and is usually a complication of paranasal sinus infection. Without appropriate treatment, orbital infection may lead to serious complications, even death. Prompt treatment is mandatory to avoid visual loss or intracranial complications. The literature shows that initially, intravenous antibiotics should be administered, and after 48 h, if no improvement appears, the affected orbit and the sinuses must be surgically drained. The authors describe two cases of orbital cellulitis with a brief literature review. Case report: The authors describe two cases of orbital abscess caused by paranasal sinus infection. In case 1, the patient presented a decreased visual acuity associated with ophthalmoplegia of the right eye. In case 2, the patient presented a decreased visual acuity. Thus, administration of intravenous antibiotic combined with surgical drainage was performed. After surgical procedure, eye movements were normalized in case 1, and in both patients, the visual acuity returned to normal parameters. Discussion: The authors recommend early surgical drainage with parenteral antibiotic administration and careful postoperative observations by monitoring the signs and symptoms of the orbital complaint. © 2012 Springer-Verlag.