926 resultados para NONLINEAR INTERNAL WAVES
Resumo:
A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.
Resumo:
A recurring feature of modern practice is occupational stress of project professionals, with both debilitating effects on the people concerned and indirectly affecting project success. Previous research outside the construction industry has involved the use of a psychology perceived stress questionnaire (PSQ) to measure occupational stress, resulting in the identification of one stressor – demand - and three sub-dimensional emotional reactions in terms of worry, tension and joy. The PSQ is translated into Chinese with a back translation technique and used in a survey of young construction cost professionals in China. Principal component analysis and confirmatory factor analysis are used to test the divisibility of occupational stress - little mentioned in previous research on stress in the construction context. In addition, structural equation modelling is used to assess nomological validity by testing the effects of the three dimensions on organizational commitment, the main finding of which is that lack of joy has the sole significant effect. The three-dimensional measurement framework facilitates the standardizing measurement of occupational stress. Further research will establish if the findings are also applicable in other settings and explore the relations between stress dimensions and other managerial concepts.
Resumo:
Internal communication is a central process by which employees exchange information, build relationships and share organisational values. Fundamental to this process is the psychological contract. However, there is limited understanding of how internal communication influences psychological contract. The study contributes to theory by demonstrating that the dimensions of internal communication independently influence internal stakeholders' psychological contract beliefs. For managers, the findings can be used as a framework to improve internal communication processes and strategies.
Resumo:
We demonstrate a geometrically inspired technique for computing Evans functions for the linearised operators about travelling waves. Using the examples of the F-KPP equation and a Keller–Segel model of bacterial chemotaxis, we produce an Evans function which is computable through several orders of magnitude in the spectral parameter and show how such a function can naturally be extended into the continuous spectrum. In both examples, we use this function to numerically verify the absence of eigenvalues in a large region of the right half of the spectral plane. We also include a new proof of spectral stability in the appropriate weighted space of travelling waves of speed c≥sqrt(2δ) in the F-KPP equation.
Resumo:
Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.
Resumo:
Background: Providing motivationally supportive physical education experiences for learners is crucial since empirical evidence in sport and physical education research has associated intrinsic motivation with positive educational outcomes. Self-determination theory (SDT) provides a valuable framework for examining motivationally supportive physical education experiences through satisfaction of three basic psychological needs: autonomy, competence and relatedness. However, the capacity of the prescriptive teaching philosophy of the dominant traditional physical education teaching approach to effectively satisfy the psychological needs of students to engage in physical education has been questioned. The constraints-led approach (CLA) has been proposed as a viable alternative teaching approach that can effectively support students’ self-motivated engagement in physical education. Purpose: We sought to investigate whether adopting the learning design and delivery of the CLA, guided by key pedagogical principles of nonlinear pedagogy (NLP), would address basic psychological needs of learners, resulting in higher self-reported levels of intrinsic motivation. The claim was investigated using action research. The teacher/researcher delivered two lessons aimed at developing hurdling skills: one taught using the CLA and the other using the traditional approach. Participants and Setting: The main participant for this study was the primary researcher and lead author who is a PETE educator, with extensive physical education teaching experience. A sample of 54 pre-service PETE students undertaking a compulsory second year practical unit at an Australian university was recruited for the study, consisting of an equal number of volunteers from each of two practical classes. A repeated measures experimental design was adopted, with both practical class groups experiencing both teaching approaches in a counterbalanced order. Data collection and analysis: Immediately after participation in each lesson, participants completed a questionnaire consisting of 22 items chosen from validated motivation measures of basic psychological needs and indices of intrinsic motivation, enjoyment and effort. All questionnaire responses were indicated on a 7-point Likert scale. A two-tailed, paired-samples t-test was used to compare the groups’ motivation subscale mean scores for each teaching approach. The size of the effect for each group was calculated using Cohen’s d. To determine whether any significant differences between the subscale mean scores of the two groups was due to an order effect, a two-tailed, independent samples t test was used. Findings: Participants’ reported substantially higher levels of self-determination and intrinsic motivation during the CLA hurdles lesson compared to during the traditional hurdles lesson. Both groups reported significantly higher motivation subscale mean scores for competence, relatedness, autonomy, enjoyment and effort after experiencing the CLA than mean scores reported after experiencing the traditional approach. This significant difference was evident regardless of the order that each teaching approach was experienced. Conclusion: The theoretically based pedagogical principles of NLP that inform learning design and delivery of the CLA may provide teachers and coaches with tools to develop more functional pedagogical climates, which result in students exhibiting more intrinsically motivated behaviours during learning.
Resumo:
In this paper, we detail the development of two stakeholder relationships scales. The scales measure major project managers' perceived competence in developing (establishing and maintaining) high quality, effective relationships with stakeholders who are internal and external to their organization. Our sample consists of 373 major project managers from a sub-set of the Australian defense industry. Both the internal stakeholder relationships scale and the external stakeholder relationships scale demonstrated validity and reliability. This research has implications for the interpersonal work relationships literature and the stakeholder management literature. We recommend that researchers test these scales with multiple samples, across different project types and project industries in the future. The stakeholder relationship scales should be versatile enough to be applied to project management generally but are perhaps best suited to major project environments.
Resumo:
The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.
Resumo:
This study implemented linear and nonlinear methods of measuring variability to determine differences in stability of two groups of skilled (n = 10) and unskilled (n = 10) participants performing 3m forward/backward shuttle agility drill. We also determined whether stability measures differed between the forward and backward segments of the drill. Finally, we sought to investigate whether local dynamic stability, measured using largest finite-time Lyapunov exponents, changed from distal to proximal lower extremity segments. Three-dimensional coordinates of five lower extremity markers data were recorded. Results revealed that the Lyapunov exponents were lower (P < 0.05) for skilled participants at all joint markers indicative of higher levels of local dynamic stability. Additionally, stability of motion did not differ between forward and backward segments of the drill (P > 0.05), signifying that almost the same control strategy was used in forward and backward directions by all participants, regardless of skill level. Furthermore, local dynamic stability increased from distal to proximal joints (P < 0.05) indicating that stability of proximal segments are prioritized by the neuromuscular control system. Finally, skilled participants displayed greater foot placement standard deviation values (P < 0.05), indicative of adaptation to task constraints. The results of this study provide new methods for sport scientists, coaches to characterize stability in agility drill performance.
Resumo:
In this paper we explore how small and medium-sized enterprises (SMEs) engage in external knowledge sourcing, a form of inbound open innovation. We draw upon a sample of 1,411 SMEs and empirically conceptualize a typology of strategic types of external knowledge sourcing, namely minimal, supply-chain, technology-oriented, application-oriented, and full-scope sourcing. Each strategy reflects the nature of external interactions and is linked to a distinct mixture of four internal practices for managing innovation. Both full-scope and application-oriented sourcing offer performance benefits and are associated with a stronger focus on managing innovation. However, they differ in their managerial focus on strategic and operational aspects.
Resumo:
Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.
Resumo:
The problem of electromagnetic scattering from an isotropic homogeneous chirally coated conducting cylinder is analysed. The cylinder is assumed to be illuminated by either a transverse magnetic or a transverse electric wave. Mie's analysis is used to evaluate the scattering characteristics. The computed results include the evaluation of the normalized scattering width and the absorption efficiency. The results show that there is a significant reduction in the normalized scattering width as compared to a RAM coated cylinder. This reduction has been attributed to increased absorption.
Resumo:
In a classic study, Kacser & Burns (1981, Genetics 97, 639-666) demonstrated that given certain plausible assumptions, the flux in a metabolic pathway was more or less indifferent to the activity of any of the enzymes in the pathway taken singly. It was inferred from this that the observed dominance of most wild-type alleles with respect to loss-of-function mutations did not require an adaptive, meaning selectionist, explanation. Cornish-Bowden (1987, J. theor. Biol. 125, 333-338) showed that the Kacser-Burns inference was not valid when substrate concentrations were large relative to the relevant Michaelis constants. We find that in a randomly constructed functional pathway, even when substrate levels are small, one can expect high values of control coefficients for metabolic flux in the presence of significant nonlinearities as exemplified by enzymes with Hill coefficients ranging from two to six, or by the existence of oscillatory loops. Under these conditions the flux can be quite sensitive to changes in enzyme activity as might be caused by inactivating one of the two alleles in a diploid. Therefore, the phenomenon of dominance cannot be a trivial ''default'' consequence of physiology but must be intimately linked to the manner in which metabolic networks have been moulded by natural selection.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Diffraction Of Elastic Waves By Two Parallel Rigid Strips Embedded In An Infinite Orthotropic Medium
Resumo:
The elastodynamic response of a pair of parallel rigid strips embedded in an infinite orthotropic medium due to elastic waves incident normally on the strips has been investigated. The mixed boundary value problem has been solved by the Integral Equation method. The normal stress and the vertical displacement have been derived in closed form. Numerical values of stress intensity factors at inner and outer edges of the strips and vertical displacement at points in the plane of the strips for several orthotropic materials have been calculated and plotted graphically to show the effect of material orthotropy.