977 resultados para NMR-diffusion
Resumo:
For maximizing influence spread in a social network, given a certain budget on the number of seed nodes, we investigate the effects of selecting and activating the seed nodes in multiple phases. In particular, we formulate an appropriate objective function for two-phase influence maximization under the independent cascade model, investigate its properties, and propose algorithms for determining the seed nodes in the two phases. We also study the problem of determining an optimal budget-split and delay between the two phases.
Resumo:
Major drawback of studying diffusion in multi-component systems is the lack of suitable techniques to estimate the diffusion parameters. In this study, a generalized treatment to determine the intrinsic diffusion coefficients in multi-component systems is developed utilizing the concept of a pseudo-binary approach. This is explained with the help of experimentally developed diffusion profiles in the Cu(Sn, Ga) and Cu(Sn, Si) solid solutions. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper, based on the principles of gauge/gravity duality and considering the so called hydrodynamic limit we compute various charge transport properties for a class of strongly coupled non-relativistic CFTs corresponding to z=2 fixed point whose dual gravitational counter part could be realized as the consistent truncation of certain non-relativistic Dp branes in the non-extremal limit. From our analysis we note that unlike the case for the AdS black branes, the charge diffusion constant in the non-relativistic background scales differently with the temperature. This shows a possible violation of the universal bound on the charge conductivity to susceptibility ratio in the context of non-relativistic holography. (C) 2015 The Author. Published by Elsevier B.V.
Resumo:
Hydrochlorothiazide (HCT) is a diuretic and a BCS class IV drug with low solubility and low permeability, exhibiting poor oral absorption. The present study attempts to improve the physicochemical properties of the drug using a crystal engineering approach with cocrystals. Such multicomponent crystals of HCT with nicotinic acid (NIC), nicotinamide (NCT), 4-aminobenzoic acid (PABA), succinamide (SAM), and resorcinol (RES) were prepared using liquid-assisted grinding, and their solubilities in pH 7.4 buffer were evaluated. Diffusion and membrane permeability were studied using a Franz diffusion cell. Except for the SAM and NIC cocrystals, all other binary systems exhibited improved solubility. All of the cocrystals showed improved diffusion/membrane permeability compared to that of HCT with the exception of the SAM cocrystal. When the solubility was high, as in the case of PABA, NCT, and RES cocrystals, the flux/permeability dropped slightly. This is in agreement with the expected interplay between solubility and permeability. Improved solubility/permeability is attributed to new drug-coformer interactions. Cocrystals of SAM, however, showed poor solubility and flux This cocrystal contains a primary sulfonamide dimer synthon similar to that of HCT polymorphs, which may be a reason for its unusual behavior. Hirshfeld surface analysis was carried out in all cases to determine whether a correlation exists between cocrystal permeability and drug-coformer interactions.
Resumo:
The rare examples of intramolecular hydrogen bonds (HB) of the type the N-H center dot center dot center dot F-C, detected in a low polarity solvent in the derivatives of hydrazides, by utilizing one and two-dimensional solution state multinuclear NMR techniques, are reported. The observation of through-space couplings, such as, (1h)J(FH), and (1h)J(FN), provides direct evidence for the existence of intra-molecular HB. Solvent induced perturbations and the variable temperature NMR experiments unambiguously establish the presence of intramolecular HB. The existence of multiple conformers in some of the investigated molecules is also revealed by two dimensional HOESY and N-15-H-1 HSQC experiments. The H-1 DOSY experimental results discard any possibility of self or cross dimerization of the molecules. The derived NMR experimental results are further substantiated by Density Function Theory (DFT) based Non Covalent Interaction (NCI), and Quantum Theory of Atom in Molecule (QTAIM) calculations. The NCI calculations served as a very sensitive tool for detection of non-covalent interactions and also confirm the presence of bifurcated HBs.
Resumo:
The study reports chiral sensing properties of RNA nucleosides. Adenosine, guanosine, uridine and cytidine are used as chiral derivatizing agents to differentiate chiral 1 degrees-amines. A three component protocol has been adopted for complexation of nucleosides and amines. The chiral differentiating ability of nucleosides is examined for different amines based on the H-1 NMR chemical shift differences of diastereomers (Delta delta(R,S)). Enantiomeric differentiation has been observed at multiple chemically distinct proton sites. Adenosine and guanosine exhibit large chiral differentiation (Delta delta(R,S)) due to the presence of a purine ring. The diastereomeric excess (de) measured by using adenosine is in good agreement with the gravimetric values.
Resumo:
The role of the molar volume on the estimated diffusion parameters has been speculated for decades. The Matano-Boltzmann method was the first to be developed for the estimation of the variation of the interdiffusion coefficients with composition. However, this could be used only when the molar volume varies ideally or remains constant. Although there are no such systems, this method is still being used to consider the ideal variation. More efficient methods were developed by Sauer-Freise, Den Broeder, and Wagner to tackle this problem. However, there is a lack of research indicating the most efficient method. We have shown that Wagner's method is the most suitable one when the molar volume deviates from the ideal value. Similarly, there are two methods for the estimation of the ratio of intrinsic diffusion coefficients at the Kirkendall marker plane proposed by Heumann and van Loo. The Heumann method, like the Matano-Boltzmann method, is suitable to use only when the molar volume varies more or less ideally or remains constant. In most of the real systems, where molar volume deviates from the ideality, it is safe to use the van Loo method. We have shown that the Heumann method introduces large errors even for a very small deviation of the molar volume from the ideal value. On the other hand, the van Loo method is relatively less sensitive to it. Overall, the estimation of the intrinsic diffusion coefficient is more sensitive than the interdiffusion coefficient.
Resumo:
The study discusses an approach that allows simultaneous determination of boronic acid and its anhydride without the need for tedious physical separation of the mixture. The assignment of the proton spectra of monomer, dimer and trimer was achieved by combining utility of 1D and 2D experimental techniques including 2D DOSY. The differential intensities of NMR peaks and supplementary resonances were detected in low polar solvents, such as, chloroform, toluene and in a non-polar solvent benzene. A fascinating phenomenon is observed at lower temperature where there is a formation of aryl boronic acid with the disappearance of boraxine formation. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A rapid and the simple chiral derivatizing protocol involving the coupling of 2-formylphenylboronic acid and an optically pure 1,1-binaphthalene]-2,2-diamine is introduced for the accurate determination of the enantiopurity of hydroxy acids and their derivatives, possessing one or two optically active centers, using H-1 NMR spectroscopy.
Resumo:
Standard Susceptible-Infected-Susceptible (SIS) epidemic models assume that a message spreads from the infected to the susceptible nodes due to only susceptible-infected epidemic contact. We modify the standard SIS epidemic model to include direct recruitment of susceptible individuals to the infected class at a constant rate (independent of epidemic contacts), to accelerate information spreading in a social network. Such recruitment can be carried out by placing advertisements in the media. We provide a closed form analytical solution for system evolution in the proposed model and use it to study campaigning in two different scenarios. In the first, the net cost function is a linear combination of the reward due to extent of information diffusion and the cost due to application of control. In the second, the campaign budget is fixed. Results reveal the effectiveness of the proposed system in accelerating and improving the extent of information diffusion. Our work is useful for devising effective strategies for product marketing and political/social-awareness/crowd-funding campaigns that target individuals in a social network.
Resumo:
NMR-based approach to metabolomics typically involves the collection of two-dimensional (2D) heteronuclear correlation spectra for identification and assignment of metabolites. In case of spectral overlap, a 3D spectrum becomes necessary, which is hampered by slow data acquisition for achieving sufficient resolution. We describe here a method to simultaneously acquire three spectra (one 3D and two 2D) in a single data set, which is based on a combination of different fast data acquisition techniques such as G-matrix Fourier transform (GFT) NMR spectroscopy, parallel data acquisition and non-uniform sampling. The following spectra are acquired simultaneously: (1) C-13 multiplicity edited GFT (3,2)D HSQC-TOCSY, (2) 2D H-1- H-1] TOCSY and (3) 2D C-13- H-1] HETCOR. The spectra are obtained at high resolution and provide high-dimensional spectral information for resolving ambiguities. While the GFT spectrum has been shown previously to provide good resolution, the editing of spin systems based on their CH multiplicities further resolves the ambiguities for resonance assignments. The experiment is demonstrated on a mixture of 21 metabolites commonly observed in metabolomics. The spectra were acquired at natural abundance of C-13. This is the first application of a combination of three fast NMR methods for small molecules and opens up new avenues for high-throughput approaches for NMR-based metabolomics.
Resumo:
Branched Chain Amino Acids (BCAAs) are related to different aspects of diseases like pathogenesis, diagnosis and even prognosis. While in some diseases, levels of all the BCAAs are perturbed; in some cases, perturbation occurs in one or two while the rest remain unaltered. In case of ischemic heart disease, there is an enhanced level of plasma leucine and isoleucine but valine level remains unaltered. In `Hypervalinemia', valine is elevated in serum and urine, but not leucine and isoleucine. Therefore, identification of these metabolites and profiling of individual BCAA in a quantitative manner in body-fluid like blood plasma/serum have long been in demand. H-1 NMR resonances of the BCAAs overlap with each other which complicates quantification of individual BCAAs. Further, the situation is limited by the overlap of broad resonances of lipoprotein with the resonances of BCAAs. The widely used commercially available kits cannot differentially estimate the BCAAs. Here, we have achieved proper identification and characterization of these BCAAs in serum in a quantitative manner employing a Nuclear Magnetic Resonance-based technique namely T-2-edited Correlation Spectroscopy (COSY). This approach can easily be extended to other body fluids like bile, follicular fluids, saliva, etc.
Resumo:
We report the diffusion characteristics of water vapor through two different porous media, viz., membrane electrode assembly (MEA) and gas diffusion layer (GDL) in a nonoperational fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) was employed for measuring water vapor concentration in the test channel. Effects of the membrane pore size and the inlet humidity on the water vapor transport are quantified through mass flux and diffusion coefficient. Water vapor transport rate is found to be higher for GDL than for MEA. The flexibility and wide range of application of TDLAS in a fuel cell setup is demonstrated through experiments with a stagnant flow field on the dry side.
Low temperature FTIR, Raman, NMR spectroscopic and theoretical study of hydroxyethylammonium picrate
Resumo:
A combined experimental (infrared, Raman and NMR) and theoretical quantum chemical study is performed on the charge-transfer complex hydroxyethylammonium picrate (HEAP). The infrared (IR) spectra for HEAP were recorded at various temperatures, ranging from 16 K to 299 K, and the Raman spectrum was recorded at room temperature. A comparison of the experimental IR and Raman spectra with the corresponding calculated spectra was done, in order to facilitate interpretation of the experimental data. Formation of the HEAP complex is evidenced by the presence of the most prominent characteristic bands of the constituting groups of the charge-transfer complex e.g., NH3+, CO- and NO2]. Vibrational spectroscopic analysis, together with natural bond orbital (NBO) and theoretical charge density analysis in the crystalline phase, was used to shed light on relevant structural details of HEAP resulting from deprotonation of picric acid followed by formation of a hydrogen bond of the N-H center dot center dot center dot OC type between the hydroxyethylammonium cation and the picrate.C-13 and H-1 NMR spectroscopic analysis are also presented for the DMSO-d(6) solution of the compound revealing that in that medium the HEAP crystal dissolves forming the free picrate and hydroxyethylammonium ions. Finally, the electron excitation analysis of HEAP was performed in an attempt to determine the nature of the most important excited states responsible for the NLO properties exhibited by the compound. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Most often the measurement of VHF from the conventional 1D H-1 NMR spectrum is severely hindered consequent to similar magnitudes of JHF and JHH couplings and the spectral multiplicity pattern. The present study reports a new 1D NMR technique based on real time spin edition, which removes all JHF and JHH while retaining only VHF of a chosen fluorine. The obtained spectrum is significantly simplified and permits straightforward determination of all possible VHF values of a chosen fluorine. Due to one dimensional nature, the method is much faster compared to 2D GET-SERF by 1-2 orders of magnitude. (C) 2015 Elsevier B.V. All rights reserved.