764 resultados para Myoma uterine
Resumo:
Relaxin is able to inhibit spontaneous, oxytocin-and prostaglandin-driven uterine contractions. The intracellular mechanism of action of relaxin on uterine relaxation had previously been studied using isometrically suspended uterine strips. Since uterine strips contain stroma as well as myometrium, the changes in biochemical parameters induced by relaxin treatment may not occur in the same cell types responsible for the physical changes. In these studies, cultures of enriched populations of rat myometrial cells were used to investigate the effect of relaxin on biochemical and morphological parameters which are related to relaxation.^ Under optimal culture conditions (initial plating density 1 - 1.5 x 10('6)cells/ml, 3 ml/35 mm dish, 2 days culture), enzymatically isolated rat myometrial cells were able to respond to relaxin with cAMP elevation. Relaxin elevated cAMP levels in the presence but not the absence of 0.1 mM methylisobutylxanthine or 0.4 um forskolin in a time- and concentration-dependent manner. In contrast, isoproterenol was able to elevate cAMP levels in the presence and absence of 0.1 mM methylisobutylxanthine.^ Oxytocin treatment caused a decrease in mean cell length and area of myometrial cells in culture which could be considered analogous to contraction. Under optimal culture conditions, relaxin increased myometrial cell length and area (i.e. analogous to relaxation) of oxytocin-treated cells in a time- and concentration-dependent manner. Other relaxants such as isoproterenol and dibutyryl cAMP also increased cell length and area of oxytocin - treated myometrial cells in culture.^ Under optimal culture conditions, relaxin decreased myosin light chain kinase activity in a time-and concentration-dependent manner by increasing the K(,50) of the enzyme for calmodulin (CaM), i.e. decreasing the affinity of the enzyme for CaM. The decrease in the affinity of myosin light chain kinase for CaM may be due to the phosphorylation of the enzyme by cAMP-dependent protein kinase. Relaxin also decreased the Ca('2+)(.)CaM-independent myosin light chain kinase activity to a lesser extent than that of the Ca('2+)(.)CaM-dependent enzyme activity. This was not attributable to a decrease in the affinity of the enzyme for myosin in myometrial cells in culture, in contrast to the finding of such a change following relaxin treatment of uterine strips. Further studies are required to clarify this point.^ There was a temporal association between the effects of relaxin on elevation of cAMP levels in the presence of 0.4 uM forskolin, increase in cell length and decrease in myosin light chain kinase activity. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
The differentiation of the reproductive organs is an essential developmental process required for the proper transmission of the genetic material. Müllerian inhibiting substance (MIS) is produced by testes and is necessary for the regression of the Müllerian ducts: the anlagen of the uterus, fallopian tubes and cervix. In vitro and standard transgenic mouse studies indicate that the nuclear hormone receptor Steroidogenic factor 1 (SF-1) and the transcription factor SOX9 play an essential role in the regulation of Mis. To test this hypothesis, mutations in the endogenous SF-1 and SOX9 binding sites in the mouse Mis promoter were introduced by gene targeting in embryonic stem (ES) cells. In disagreement with cell culture and transgenic mouse studies, male mice homozygous for the mutant SF-1 binding site correctly initiated Mis transcription in the fetal testes, although at significantly reduced levels. Surprisingly, sufficient Mis was produced for complete elimination of the Müllerian duct system. However, when the SF-1 binding site mutation was combined with an Mis -null allele, the further decrease in Mis levels led to a partial retention of uterine tissue, but only at a distance from the testes. In contrast, males homozygous for the mutant SOX9 binding site did not initiate Mis transcription, resulting in pseudohermaphrodites with a uterus and oviducts. These studies suggest an essential role for SOX9 in the initiation of Mis transcription, whereas SF-1 appears to act as a quantitative regulator of Mis transcript levels perhaps for influencing non-Müllerian duct tissues. ^ The Mis type II receptor, a member of the TGF- b superfamily, is also required for the proper regression of the Müllerian ducts. Mis type II receptor-deficient human males and their murine counterparts develop as pseudohermaphrodites. A lacZ reporter cassette was introduced into the mouse Mis type II receptor gene, by homologous recombination in ES cells. Expression studies, based on b -galactosidase activity, show marked expression of the MIS type II receptor in the postnatal Sertoli cells of the testis as well as in the prenatal and postnatal granulosa cells of the ovary. Expression is also seen in the mesenchymal cells surrounding the Müllerian duct and in the longitudinal muscle layer of the uterus. ^
Resumo:
Extracellular matrix (ECM) is a component of a variety of organisms that provides both structural support and influence upon the cells it surrounds. The importance of the ECM is becoming more apparent as matrix defects are linked to human disease. In this study, the large, extracellular matrix heparan sulfate proteoglycan, perlecan (Pln) is examined in two systems. First, the role of Pln in the interaction between a blastocyst and uterine epithelial cells is investigated. In mice, blastocyst attachment and implantation occurs at approximately d 4.5 post coitus. In addition, a delayed implantation model has been used to distinguish between the response of the blastocyst to that of hatching and of becoming attachment competent. ^ The second series of experiments described in this study focuses on the process of chondrogenesis in mice. Pln, commonly expressed with other basement membrane (BM) proteins, was found to be expressed in cartilaginous tissue without other BM proteins. This unusual expression pattern led to further study and the development of an in vitro chondrogenesis assay using the mouse embryonic fibroblast cell line, C3H/10T1/2. When cultured on Pln in vitro, these cells form aggregates and express the cartilage proteins, collagen type II and aggrecan. In examining the participation of the heparan sulfate (HS) chains in this process, the proteoglycan was enzymatically digested to remove the HS chains before the initiation of 10T1/2 cell culture. After digestion, the ability of Pln to stimulate aggregate formation was greatly diminished. Thus, the HS chains participate in the cell induction process. To determine which domain of Pln might be responsible for this activity, recombinant fragments of Pin were used in the cell culture assay. Of all recombinant protein fragments tested, only the domain including the HS chains, domain 1, was able to initiate the morphological change exhibited by the 10T1/2 cells. Similar to native Pln, when HS chains were removed from domain I, chondrogenic activity was abolished. A variant of domain I carrying both HS and chondroitin sulfate (CS) chains retained activity when only HS chains were removed. When both HS and CS chains were removed, then activity was lost. ^ The ability to rapidly stimulate differentiation of 10T1/2 cells in vitro may lead to better control of chondrogenesis in vitro and in vivo, providing better understanding and manipulation of the chondrogenic process. This greater understanding may have benefits for study of cartilage and bone diseases and subsequent treatment options. (Abstract shortened by UMI.)^
Resumo:
Cell signaling by nitric oxide (NO) through soluble guanylyl cyclase (sGC) and cGMP production regulates physiological responses such as smooth muscle relaxation, neurotransmission, and cell growth and differentiation. Although the NO receptor, sGC, has been studied extensively at the protein level, information on regulation of the sGC genes remains elusive. In order to understand the molecular mechanisms involved at the level of gene expression, cDNA and genomic fragments of the murine sGCα1 subunit gene were obtained through library screenings. Using the acquired clones, the sGCα 1 gene structure was determined following primer extension, 3 ′RACE and intron/exon boundary analyses. The basal activity of several 5′-flanking regions (putative promoter regions) for both the α1 and β1 sGC subunits were determined following their transfection into mouse N1E-115 neuroblastoma and rat RENE1Δ14 uterine epithelial cells using a luciferase reporter plasmid. Using the sGC sequences, real-time RT-PCR assays were designed to measure mRNA levels of the sGC α1 and β1 genes in rat, mouse and human. Subsequent studies found that uterine sGC mRNA and protein levels decreased rapidly in response to 17β-estradiol (estrogen) in an in vivo rat model. As early as 1 hour following treatment, mRNA levels of both sGC mRNAs decreased, and reached their lowest level of expression after 3 hours. This in vivo response was completely blocked by the pure estrogen receptor antagonist, ICI 182,780, was not seen in several other tissues examined, did not occur in response to other steroid hormones, and was due to a post-transcriptional mechanism. Additional studies ex vivo and in various cell culture models suggested that the estrogen-mediated decreased sGC mRNA expression did not require signals from other tissues, but may require cell communication or paracrine factors between different cell types within the uterus. Using chemical inhibitors and molecular targeting in other related studies, it was revealed that c-Jun-N-terminal kinase (JNK) signaling was responsible for decreased sGC mRNA expression in rat PC12 and RFL-6 cells, two models previously determined to exhibit rapid decreased sGC mRNA expression in response to different stimuli. To further investigate the post-transcriptional gene regulation, the full length sGCα1 3′-untranslated region (3′UTR) was cloned from rat uterine tissue and ligated downstream of the rabbit β-globin gene and expressed as a chimeric mRNA in the rat PC12 and RFL-6 cell models. Expression studies with the chimeric mRNA showed that the sGCα 1 3′UTR was not sufficient to mediate the post-transcriptional regulation of its mRNA by JNK or cAMP signaling in PC12 and RFL-6 cells. This study has provided numerous valuable tools for future studies involving the molecular regulation of the sGC genes. Importantly, the present results identified a novel paradigm and a previously unknown signaling pathway for sGC mRNA regulation that could potentially be exploited to treat diseases such as uterine cancers, neuronal disorders, hypertension or various inflammatory conditions. ^
Resumo:
The uterine endometrium is a major target for the estrogen. However, the molecular basis of estrogen action in the endometrium is largely unknown. I have used two approaches to study the effects of estrogen on the endometrium. One approach involved the study of the interaction between estrogen and retinoic acid (RA) pathways in the endometrium. I have demonstrated that estrogen administration to rodents and estrogen replacement therapy (ERT) in postmenopausal women selectively induced the endometrial expression of retinaldehyde dehydrogenase II (RALDH2), a critical enzyme of RA biosynthesis. RALDH2 was expressed exclusively in the stromal cells, especially in the stroma adjacent to the luminal and glandular epithelia. The induction of RALDH2 by estrogen required estrogen receptor and occurred via a direct increase in RALDH2 transcription. Among the three RA receptors, estrogen selectively induced the expression of RARα. In parallel, estrogen also increased the utilization of all-trans retinol (the substrate for RA biosynthesis) and the expression of two RA-regulated marker genes, cellular retinoic acid binding protein II (CRABP2) and tissue transglutaminase (tTG) in the endometrium. Thus estrogen coordinately upregulated both the production and signaling of RA in both the rodent and human endometrium. This coordinate upregulation of RA system appeared to play a role in counterbalancing the stimulatory effects of estrogen on the endometrium, since the depletion of endogenous RA in mice led to an increase in estrogen-stimulated stromal proliferation and endometrial Akt phosphorylation. In addition, I have also used a systematic approach (DNA microarray) to categorize genes and pathways affected by the ERT in the endometrium of postmenopausal women and identified a novel estrogen-regulated gene EIG121. EIG121 was exclusively expressed in the glandular epithelial cells of the endometrium and induced by estrogen in vivo and in cultured cell lines. Compared with the normal endometrium, EIG121 was highly overexpressed in type 1 endometrial cancer, but profoundly suppressed in type 2 endometrial tumors. Taken together, these studies suggested that estrogen regulates the expression of many genes of both the pro-proliferative and anti-proliferative pathways and the abnormality of these pathways may increase the risks for estrogen-dependent endometrial hyperplasia and endometrial cancer. ^
Resumo:
Epidemiological studies have led to the hypothesis that major risk factors for developing diseases such as hypertension, cardiovascular disease and adult-onset diabetes are established during development. This developmental programming hypothesis proposes that exposure to an adverse stimulus or insult at critical, sensitive periods of development can induce permanent alterations in normal physiological processes that lead to increased disease risk later in life. For cancer, inheritance of a tumor suppressor gene defect confers a high relative risk for disease development. However, these defects are rarely 100% penetrant. Traditionally, gene-environment interactions are thought to contribute to the penetrance of tumor suppressor gene defects by facilitating or inhibiting the acquisition of additional somatic mutations required for tumorigenesis. The studies presented herein identify developmental programming as a distinctive type of gene-environment interaction that can enhance the penetrance of a tumor suppressor gene defect in adult life. Using rats predisposed to uterine leiomyoma due to a germ-line defect in one allele of the tuberous sclerosis complex 2 (Tsc-2) tumor suppressor gene, these studies show that early-life exposure to the xenoestrogen, diethylstilbestrol (DES), during development of the uterus increased tumor incidence, multiplicity and size in genetically predisposed animals, but failed to induce tumors in wild-type rats. Uterine leiomyomas are ovarian-hormone dependent tumors that develop from the uterine myometrium. DES exposure was shown to developmentally program the myometrium, causing increased expression of estrogen-responsive genes prior to the onset of tumors. Loss of function of the normal Tsc-2 allele remained the rate-limiting event for tumorigenesis; however, tumors that developed in exposed animals displayed an enhanced proliferative response to ovarian steroid hormones relative to tumors that developed in unexposed animals. Furthermore, the studies presented herein identify developmental periods during which target tissues are maximally susceptible to developmental programming. These data suggest that exposure to environmental factors during critical periods of development can permanently alter normal physiological tissue responses and thus lead to increased disease risk in genetically susceptible individuals. ^
Resumo:
Maternal ingestion of high concentrations of radon-222 (Rn-222) in drinking during pregnancy may pose a significant radiation hazard to the developing embryo. The effects of ionizing radiation to the embryo and fetus have been the subject of research, analyses, and the development of a number of radiation dosimetric models for a variety of radionuclides. Currently, essentially all of the biokinetic and dosimetric models that have been developed by national and international radiation protection agencies and organizations recommend calculating the dose to the mother's uterus as a surrogate for estimating the dose to the embryo. Heretofore, the traditional radiation dosimetry models have neither considered the embryo a distinct and rapidly developing entity, the fact that it is implanted in the endometrial layer of the uterus, nor the physiological interchanges that take place between maternal and embryonic cells following the implantation of the blastocyst in the endometrium. The purpose of this research was to propose a new approach and mathematical model for calculating the absorbed radiation dose to the embryo by utilizing a semiclassical treatment of alpha particle decay and subsequent scattering of energy deposition in uterine and embryonic tissue. The new approach and model were compared and contrasted with the currently recommended biokinetic and dosimetric models for estimating the radiation dose to the embryo. The results obtained in this research demonstrate that the estimated absorbed dose for an embryo implanted in the endometrial layer of the uterus during the fifth week of embryonic development is greater than the estimated absorbed dose for an embryo implanted in the uterine muscle on the last day of the eighth week of gestation. This research provides compelling evidence that the recommended methodologies and dosimetric models of the Nuclear Regulatory Commission and International Commission on Radiological Protection employed for calculating the radiation dose to the embryo from maternal intakes of radionuclides, including maternal ingestion of Rn-222 in drinking water would result in an underestimation of dose. ^
Resumo:
In the endometrium, hormonal effects on epithelial cells are often elicited through stromal hormone receptors via unknown paracrine mechanisms. Several lines of evidence support the hypothesis that Wnts participate in stromal-epithelial cell communication and thus mediate hormone action. Characterization of specific Wnt signaling components in the endometrium was performed using cellular localization studies and evaluating hormone effects in a rat model. Wnt7a was expressed in the luminal epithelium, whereas the extracellular Wnt modulator, SFRP4, was localized to the endometrial stroma. SFRP4 expression is significantly decreased in endometrial carcinoma and aberrant Wnt7a signaling has been shown to cause uterine defects and contribute to the onset of disease. The specific Fzds and SFRPs that bind Wnt7a and the particular signal transduction pathway each Wnt7a-Fzd pair activates have not been identified. Additionally, the function of Wnt7a and SFRP4 in the endometrium has not been addressed. A survey of all Wnt signaling proteins expressed in the endometrium was conducted and Fzd5 and Fzd10 were identified as two receptors capable of transducing the Wnt7a signal. Biologically active recombinant Wnt7a and SFRP4 proteins were purified for quantitative biochemical studies. In Ishikawa cells, Wnt7a binding to Fzd5 activated β-catenin/canonical Wnt signaling and increased cellular proliferation. Wnt7a signaling mediated by Fzd10 induced a non-canonical/JNK-responsive pathway. SFRP4 suppressed Wnt7a action in both an autocrine and paracrine manner. Treatment with SFRP4 protein and overexpression of SFRP4 inhibited endometrial cancer cell growth and induced apoptosis in vitro. A split-eGFP complementation assay was developed to visually detect Wnt7a-Fzd interactions and subsequent pathway activation in cells. By employing a unique ELISA-based protein-protein binding technique, it was demonstrated that Wnt7a binds to SFRP4 and Fzd5 with equal nanomolar affinity. The development of these novel biological tools could lead to a better understanding of Wnt-protein interactions and the identification of new modulators of Wnt signaling. This study supports a mechanism by which the nature of the Wnt7a signal in the endometrium is dependent upon the Fzd repertoire of the cell and can be regulated by SFRP4. The potential tumor suppressor function of SFRP4 suggests it may serve as a therapeutic target for endometrial carcinoma. ^
Resumo:
Diethylstilbestrol (DES) exposed women are well known to be at increased risk of gynecologic cancers and infertility. Infertility may result from DES associated abnormalities in the shape of women's uteri, yet little research has addressed the effect of uterine abnormalities on risk of infertility and reproductive tract infection. Changes in uterine shape may also influence the risk of autoimmune disease and women's subsequent mental health. A sample of consenting women exposed in utero to hormone who were recruited into the DESAD project, underwent hysterosalpingogram (HSG) from 1978 to 1984. These women also completed a comprehensive health questionnaire in 1994 which included women's self-reports of chronic conditions. HSG data were used to categorize uterine shape abnormalities as arcuate shape, hypoplastic, wide lower segment, and constricted. Women were recruited from two of the four DESAD study sites in Houston (Baylor) and Minnesota (Mayo). All women were DES-exposed. Adjusted relative risk estimates were calculated comparing the range of abnormal uterine shaped to women with normal shaped uteri for each of the four outcomes: infertility, reproductive tract infection, autoimmune disease and depressive symptoms. Only the arcuate shape (n=80) was associated with a higher risk of infertility (relative risk [RR]= 1.53, 95% CI = 1.09, 2.15) as well as reproductive tract infection (RR= 1.74, 95% CI = 1.11, 2.73). In conclusion, DES-associated arcuate shaped uteri appeared to be associated with the higher risk of a reproductive tract infection and infertility while no other abnormal uterine shapes were associated with these two outcomes.^
Resumo:
Objective: The primary objective of this project was to describe the efficacy of the Levonorgestrel Intrauterine Device (LIUD) for treatment of Complex Endometrial Cancer (CAH) and Grade 1 Endometrial Cancer (G1EEC) in terms of rate of Complete Response (CR) and Partial Response (PR) after 6 months of therapy. Finally, we assessed if any clinical or pathologic features were associated with response to the LIUD. ^ Methods: This study was a retrospective case series designed to report the response rate of patients with CAH or G1EEC treated with LIUD therapy. In addition, this study has a laboratory component to assess molecular predictors of response to LIUD therapy. Retrospective data already collected from patients diagnosed with CAH or EEC grade 1 and treated with LIUD therapy at MD Anderson Cancer Center (MDACC) were used for this study. Patients from all ethnic and race groups were included. A Complete Response (CR) was defined in patients diagnosed with CAH if pathologic report at 6 months demonstrated either no evidence of hyperplasia or no atypia in the setting of simple or complex hyperplasia. Partial Response (PR) was recorded if disease downgraded to only CAH from G1EEC. No Response (NR) was recorded if pathologic report demonstrates no change (Stable Disease, SD) or progression to cancer (Progressive Disease, PD). We calculated the proportion of patients with complete response to LIUD therapy with 95% confidence interval. We compared the response rates (CR/PR vs NR) by obesity status (Obese if BMI > 40 kg/m2 vs non-obese if BMI <= 40 kg/m2) as well as other clinical and pathologic factors, such as age, uterine size (median size), and presence of exogenous progesterone effect. ^ Results: There were 39 patients diagnosed with either CAH or G1EEC treated with the LIUD. Of 39 patients, 12 did not have pathological results of biopsy at 6months time period. Of 27 evaluable patients, 17 were diagnosed with CAH and 10 with G1EEC. Overall response rate (RR) was 78% (95% CI = 62-94%) at 6 months, 18 patients had CR (4 in G1EEC; 14 in CAH), 3 patients had PR (3 in G1EEC), 3 had SD (1 in CAH; 2 in G1EEC), 3 had PD (2 in CAH; 1 in G1EEC). After histology stratification, RR at 6 months was 82.35% (14/17; 95%CI = 67.4-97.3%) in CAH and 70% (7/10; 95% CI = 41-98.4%) in G1EEC. ^ There was no difference in response (R) and no response (NR) based on BMI (p=0.56). He observed a trend showing association between age with response (p=0.1). There was no association between uterine size and response to therapy (p=0.17). We recorded strong association between exogenous progesterone effect and response. ^ Conclusion: LIUD therapy for the treatment of CAH and G1EEC may be effective and safe. Presence of exogenous progesterone effect may predict the response to LIUD therapy at earlier time points. There is need of further studies with larger sample size to explore the relationship of response with other clinical and pathologic factors^
Resumo:
Background: Lynch Syndrome (LS) is a familial cancer syndrome with a high prevalence of colorectal and endometrial carcinomas among affected family members. Clinical criteria, developed from information obtained from familial colorectal cancer registries, have been generated to identify individuals at elevated risk for having LS. In 2007, the Society of Gynecologic Oncology (SGO) codified criteria to assist in identifying women presenting with gynecologic cancers at elevated risk for having LS. These criteria have not been validated in a population-based setting. Materials and Methods: We retrospectively identified 412, unselected endometrial cancer cases. Clinical and pathologic information were obtained from the electronic medical record, and all tumors were tested for expression of the DNA mismatch repair proteins through immunohistochemistry. Tumors exhibiting loss of MSH2, MSH6 and PMS2 were designated as probable Lynch Syndrome (PLS). For tumors exhibiting immunohistochemical loss of MLH1, we used the PCR-based MLH1 methylation assay to delineate PLS tumors from sporadic tumors. Samples lacking methylation of the MLH1 promoter were also designated as PLS. The sensitivity and specificity for SGO criteria for detecting PLS tumors was calculated. We compared clinical and pathologic features of sporadic tumors and PLS tumors. A simplified cost-effectiveness analysis was also performed comparing the direct costs of utilizing SGO criteria vs. universal tumor testing. Results: In our cohort, 43/408 (10.5%) of endometrial carcinomas were designated as PLS. The sensitivity and specificity of SGO criteria to identify PLS cases were 32.7 and 77%, respectively. Multivariate analysis of clinical and pathologic parameters failed to identify statistically significant differences between sporadic and PLS tumors with the exception of tumors arising from the lower uterine segment. These tumors were more likely to occur in PLS tumors. Cost-effectiveness analysis showed clinical criteria and universal testing strategies cost $6,235.27/PLS case identified and $5,970.38/PLS case identified, respectively. Conclusions: SGO 5-10% criteria successfully identify PLS cases among women who are young or have significant family history of LS related tumors. However, a larger proportion of PLS cases occurring at older ages with less significant family history are not detected by this screening strategy. Compared to SGO clinical criteria, universal tumor testing is a cost effective strategy to identify women presenting with endometrial cancer who are at elevated risk for having LS.
Resumo:
OBJECTIVE: To systematically review published literature to examine the complications associated with the use of misoprostol and compare these complications to those associated with other forms of abortion induction. ^ DATA SOURCES: Studies were identified through searches of medical literature databases including Medline (Ovid), PubMed (NLM), LILACS, sciELO, and AIM (AFRO), and review of references of relevant articles. ^ STUDY SELECTION AND METHODS: A descriptive systematic review that included studies reported in English and published before December 2012. Eligibility criteria included: misoprostol (with or without other methods) and any other method of abortion in a developing country, as well as quantitative data on the complication of each method. The following is information extracted from each study: author/year, country/city, study design/study sample, age range, setting of data collection, sample size, the method of abortion induction, the number of cases for each method, and the percentage of complications with each method. RESULTS: A total of 4 studies were identified (all in Latin America) describing post-abortion complications of misoprostol and other methods in countries where abortion is generally considered unsafe and/or illegal. The four studies reported on a range of complications including: bleeding, infection, incomplete abortion, intense pelvic pain, uterine perforation, headache, diarrhea, nausea, mechanical lesions, and systemic collapse. The most prevalent complications of misoprostol-induced abortion reported were: bleeding (7-82%), incomplete abortion (33-70%), and infection (0.8-67%). The prevalence of these complications reported from other abortion methods include: bleeding (16-25%), incomplete abortion (15-82%), and infection (13-50%). ^ CONCLUSION: The literature identified by this systematic review is inadequate for determining the complications of misoprostol used in unsafe settings. Abortion is considered an illicit behavior in these countries, therefore making it difficult to investigate the details needed to conduct a study on abortion complications. Given the differences between the reviewed studies as well as a variety of study limitations, it is not possible to draw firm conclusions about the rates of specific-abortion related complications.^
Resumo:
Exogenous ligands that bind to the estrogen receptor (ER) exhibit unique pharmacologies distinct from that observed with the endogenous hormone, 17β-estradiol (ED. Differential activity among ER ligands has been observed at the level of receptor binding, promoter interaction and transcriptional activation. Furthermore, xenoestrogens can display tissue-specific agonist activity on the cellular level, functioning as an agonist in one tissue and as an antagonist in another. That the same ligand, functioning through the same receptor, can produce differing agonist responses on the cellular level indicates that there are tissue-specific determinants of agonist activity. In these studies critical molecular determinants of agonist activity were characterized for several cell types. In the normal and neoplastic myometrium a proliferative response was dependent upon activation of AF2 of the ER, functioning as a determinant of agonism in this cell type. Progesterone receptor (PR) ligands transdominantly suppressed ER-mediated transcription and proliferation in uterine leiomyoma cells, indicating that ER/PR cross-talk can modulate agonist activity in a myometrial cell background. In the breast, the agonist response to ER ligands was investigated by employing a functional genomics approach to generate gene expression profiles. Treatment of breast cancer cells with the selective estrogen receptor modulator tamoxifen largely recapitulated the expression profile induced by treatment with the agonist E2, despite the well-characterized antiproliferative effects produced by tamoxifen in this cell type. While the expression of many genes involved in regulating cell cycle progression, including fos, myc, cdc25a, stk15 and cyclin A, were induced by both E2 and tamoxifen in breast cells, treatment with the agonist E2 specifically induced the expression of cyclin D1, fra-1 , and uracil DNA glycosylase. These results suggest that the inability of tamoxifen to transactivate expression of only a few key genes, functioning as cellular gatekeepers, prevent tamoxifen-treated breast cells from entering the cell cycle. Thus, the expression of these agonist-specific marker genes is a potential determinant of agonist activity at the cellular level in the breast. Collectively, studies in the breast and uterine myometrium have identified several mechanisms whereby ER ligands modulate ER-mediated signaling and provide insights into the biology of tissue-specific agonist activity in hormone-responsive tissues. ^
Resumo:
BACKGROUND: From 2001 to March 2006, Planned Parenthood Federation of America (Planned Parenthood) health centers throughout the United States provided medical abortions principally by a regimen of oral mifepristone, followed 24-48 h later by vaginal misoprostol. In late March 2006, analyses of serious uterine infections following medical abortions led Planned Parenthood to change the route of misoprostol administration and to employ additional measures to minimize subsequent serious uterine infections. In August 2006, we conducted an extensive audit of medical abortions with the new buccal misoprostol regimen so that patients could be given accurate information about the success rate of the new regimen. OBJECTIVES: We sought to evaluate the effectiveness of the buccal medical abortion regimen and to examine correlates of its success during routine service delivery. METHODS: In 2006, audits were conducted in 10 large urban service points to estimate the success rates of the buccal regimen. Success was defined as medical abortion without vacuum aspiration. These audits also permitted estimates of success rates with oral misoprostol following mifepristone in a subset in which 98% of the subjects stemmed from two sites. RESULTS: The effectiveness of the buccal misoprostol-mifepristone regimen was 98.3% for women with gestational ages below 60 days. The oral misoprostol-mifepristone regimen, used by 278 women with a gestational age below 50 days, had a success rate of 96.8%. CONCLUSION: In conjunction with 200 mg of mifepristone, use of 800 mcg of buccal misoprostol up to 59 days of gestation is as effective as the use of 800 mcg of vaginal misoprostol up to 63 days of gestation.
Resumo:
Hybrid mice carrying oncogenic transgenes afford powerful systems for investigating loss of heterozygosity (LOH) in tumors. Here, we apply this approach to a neoplasm of key importance in human medicine: mammary carcinoma. We performed a whole genome search for LOH using the mouse mammary tumor virus/v-Ha-ras mammary carcinoma model in female (FVB/N × Mus musculus castaneus)F1 mice. Mammary tumors developed as expected, as well as a few tumors of a second type (uterine leiomyosarcoma) not previously associated with this transgene. Genotyping of 94 anatomically independent tumors revealed high-frequency LOH (≈38%) for markers on chromosome 4. A marked allelic bias was observed, with M. musculus castaneus alleles almost exclusively being lost. No evidence of genomic imprinting effects was noted. These data point to the presence of a tumor suppressor gene(s) on mouse chromosome 4 involved in mammary carcinogenesis induced by mutant H-ras expression, and for which a significant functional difference may exist between the M. musculus castaneus and FVB/N alleles. Provisional subchromosomal localization of this gene, designated Loh-3, can be made to a distal segment having syntenic correspondence to human chromosome 1p; LOH in this latter region is observed in several human malignancies, including breast cancers. Evidence was also obtained for a possible second locus associated with LOH with less marked allele bias on proximal chromosome 4.