726 resultados para Multimedia-based learning
Resumo:
This work shows the use of adaptation techniques involved in an e-learning system that considers students' learning styles and students' knowledge states. The mentioned e-learning system is built on a multiagent framework designed to examine opportunities to improve the teaching and to motivate the students to learn what they want in a user-friendly and assisted environment
Resumo:
The emergence of the Web 2.0 technologies in the last years havechanged the way people interact with knowledge. Services for cooperation andcollaboration have placed the user in the centre of a new knowledge buildingspace. The development of new second generation learning environments canbenefit from the potential of these Web 2.0 services when applied to aneducational context. We propose a methodology for designing learningenvironments that relates Web 2.0 services with the functional requirements ofthese environments. In particular, we concentrate on the design of the KRSMsystem to discuss the components of this methodology and its application.
Resumo:
This paper introduces Collage, a high-level IMS-LD compliant authoring tool that is specialized for CSCL (Computer-Supported Collaborative Learning). Nowadays CSCL is a key trend in elearning since it highlights the importance of social interactions as an essential element of learning. CSCL is an interdisciplinary domain, which demands participatory design techniques that allow teachers to get directly involved in design activities. Developing CSCL designs using LD is a difficult task for teachers since LD is a complex technical specification and modelling collaborative characteristics can be tricky. Collage helps teachers in the process of creating their own potentially effective collaborative Learning Designs by reusing and customizing patterns, according to the requirements of a particular learning situation. These patterns, called Collaborative Learning Flow Patterns (CLFPs), represent best practices that are repetitively used by practitioners when structuring the flow of (collaborative) learning activities. An example of an LD that can be created using Collage is illustrated in the paper. Preliminary evaluation results show that teachers, with experience in CL but without LD knowledge, can successfully design real collaborative learning experiences using Collage.
Resumo:
Collage is a pattern-based visual design authoring tool for the creation of collaborative learning scripts computationally modelled with IMS Learning Design (LD). The pattern-based visual approach aims to provide teachers with design ideas that are based on broadly accepted practices. Besides, it seeks hiding the LD notation so that teachers can easily create their own designs. The use of visual representations supports both the understanding of the design ideas and the usability of the authoring tool. This paper presents a multicase study comprising three different cases that evaluate the approach from different perspectives. The first case includes workshops where teachers use Collage. A second case implies the design of a scenario proposed by a third-party using related approaches. The third case analyzes a situation where students follow a design created with Collage. The cross-case analysis provides a global understanding of the possibilities and limitations of the pattern-based visual design approach.
Resumo:
This paper describes a Computer-Supported Collaborative Learning (CSCL) case study in engineering education carried out within the context of a network management course. The case study shows that the use of two computing tools developed by the authors and based on Free- and Open-Source Software (FOSS) provide significant educational benefits over traditional engineering pedagogical approaches in terms of both concepts and engineering competencies acquisition. First, the Collage authoring tool guides and supports the course teacher in the process of authoring computer-interpretable representations (using the IMS Learning Design standard notation) of effective collaborative pedagogical designs. Besides, the Gridcole system supports the enactment of that design by guiding the students throughout the prescribed sequence of learning activities. The paper introduces the goals and context of the case study, elaborates onhow Collage and Gridcole were employed, describes the applied evaluation methodology, anddiscusses the most significant findings derived from the case study.
Resumo:
When applying a Collaborative Learning Flow Pattern (CLFP) to structure sequences of activities in real contexts, one of the tasks is to organize groups of students according to the constraints imposed by the pattern. Sometimes,unexpected events occurring at runtime force this pre-defined distribution to be changed. In such situations, an adjustment of the group structures to be adapted to the new context is needed. If the collaborative pattern is complex, this group redefinitionmight be difficult and time consuming to be carried out in real time. In this context, technology can help on notifying the teacher which incompatibilitiesbetween the actual context and the constraints imposed by the pattern. This chapter presents a flexible solution for supporting teachers in the group organization profiting from the intrinsic constraints defined by a CLFPs codified in IMS Learning Design. A prototype of a web-based tool for the TAPPS and Jigsaw CLFPs and the preliminary results of a controlled user study are alsopresented as a first step towards flexible technological systems to support grouping tasks in this context.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
OBJECTIVETo identify the association between the use of web simulation electrocardiography and the learning approaches, strategies and styles of nursing degree students.METHODA descriptive and correlational design with a one-group pretest-posttest measurement was used. The study sample included 246 students in a Basic and Advanced Cardiac Life Support nursing class of nursing degree.RESULTSNo significant differences between genders were found in any dimension of learning styles and approaches to learning. After the introduction of web simulation electrocardiography, significant differences were found in some item scores of learning styles: theorist (p < 0.040), pragmatic (p < 0.010) and approaches to learning.CONCLUSIONThe use of a web electrocardiogram (ECG) simulation is associated with the development of active and reflexive learning styles, improving motivation and a deep approach in nursing students.
Resumo:
This PhD thesis addresses the issue of scalable media streaming in large-scale networking environments. Multimedia streaming is one of the largest sink of network resources and this trend is still growing as testified by the success of services like Skype, Netflix, Spotify and Popcorn Time (BitTorrent-based). In traditional client-server solutions, when the number of consumers increases, the server becomes the bottleneck. To overcome this problem, the Content-Delivery Network (CDN) model was invented. In CDN model, the server copies the media content to some CDN servers, which are located in different strategic locations on the network. However, they require heavy infrastructure investment around the world, which is too expensive. Peer-to-peer (P2P) solutions are another way to achieve the same result. These solutions are naturally scalable, since each peer can act as both a receiver and a forwarder. Most of the proposed streaming solutions in P2P networks focus on routing scenarios to achieve scalability. However, these solutions cannot work properly in video-on-demand (VoD) streaming, when resources of the media server are not sufficient. Replication is a solution that can be used in these situations. This thesis specifically provides a family of replication-based media streaming protocols, which are scalable, efficient and reliable in P2P networks. First, it provides SCALESTREAM, a replication-based streaming protocol that adaptively replicates media content in different peers to increase the number of consumers that can be served in parallel. The adaptiveness aspect of this solution relies on the fact that it takes into account different constraints like bandwidth capacity of peers to decide when to add or remove replicas. SCALESTREAM routes media blocks to consumers over a tree topology, assuming a reliable network composed of homogenous peers in terms of bandwidth. Second, this thesis proposes RESTREAM, an extended version of SCALESTREAM that addresses the issues raised by unreliable networks composed of heterogeneous peers. Third, this thesis proposes EAGLEMACAW, a multiple-tree replication streaming protocol in which two distinct trees, named EAGLETREE and MACAWTREE, are built in a decentralized manner on top of an underlying mesh network. These two trees collaborate to serve consumers in an efficient and reliable manner. The EAGLETREE is in charge of improving efficiency, while the MACAWTREE guarantees reliability. Finally, this thesis provides TURBOSTREAM, a hybrid replication-based streaming protocol in which a tree overlay is built on top of a mesh overlay network. Both these overlays cover all peers of the system and collaborate to improve efficiency and low-latency in streaming media to consumers. This protocol is implemented and tested in a real networking environment using PlanetLab Europe testbed composed of peers distributed in different places in Europe.
Resumo:
The Learning Affect Monitor (LAM) is a new computer-based assessment system integrating basic dimensional evaluation and discrete description of affective states in daily life, based on an autonomous adapting system. Subjects evaluate their affective states according to a tridimensional space (valence and activation circumplex as well as global intensity) and then qualify it using up to 30 adjective descriptors chosen from a list. The system gradually adapts to the user, enabling the affect descriptors it presents to be increasingly relevant. An initial study with 51 subjects, using a 1 week time-sampling with 8 to 10 randomized signals per day, produced n = 2,813 records with good reliability measures (e.g., response rate of 88.8%, mean split-half reliability of .86), user acceptance, and usability. Multilevel analyses show circadian and hebdomadal patterns, and significant individual and situational variance components of the basic dimension evaluations. Validity analyses indicate sound assignment of qualitative affect descriptors in the bidimensional semantic space according to the circumplex model of basic affect dimensions. The LAM assessment module can be implemented on different platforms (palm, desk, mobile phone) and provides very rapid and meaningful data collection, preserving complex and interindividually comparable information in the domain of emotion and well-being.
Resumo:
Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.
Resumo:
The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Tämän diplomityön tavoitteena on kuvata tiedonkulkua projektiliiketoimintaa harjoittavassa yrityksessä sekä analysoida kuvausta määrittäen mahdolliset kehityskohdat. Työssätuotetut kuvaukset ja kehityskohtien määrittäminen toimivat pohjana yrityksen kehittäessä projektien hallintaansa tulevaisuudessa. Työssä valitaan tietojohtamisen näkökulma sopivaksi lähestymistavaksi yrityksen toiminnananalysointiin. Haastatteluin kerätyn tutkimusmateriaalin perusteella luodaan prosessikuvaukset jotka mallintavat tietovirtoja yrityksen projektien aikana tapahtuvien prosessien välillä. Kuvausta peilataan tietämyksen luomisen sekä projektien tietojohtamisen teoriaan ja määritetään kehityskohteita. Kehityskohteiden määrittämisen lisäksi ehdotetaan mahdollisia toimenpiteitä tiedon ja tietämyksen hallinnan kehittämiseksi. Kokemusten ja opittujen asioiden sekäpalautteen kerääminen projektien aikana sekä niiden jälkeen havaittiin tärkeimmäksi kehityskohdaksi. Näiden keräämisen voidaan todeta vaativan järjestelmällisyyttä jotta projektien onnistumiset sekä niissä saavutetut parannukset voidaan toistaa jatkossa ja virheet sekä epäonnistumiset sitä vastoin välttää.