834 resultados para Multicommodity capacitated network design problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Procurement is one of major business operations in public service sector. The advance of information and communication technology (ICT) pushes this business operation to increase its efficiency and foster collaborations between the organization and its suppliers. This leads to a shift from the traditional procurement transactions to an e-procurement paradigm. Such change impacts on business process, information management and decision making. E-procurement involves various stakeholders who engage in activities based on different social and cultural practices. Therefore, a design of e-procurement system may involve complex situations analysis. This paper describes an approach of using the problem articulation method to support such analysis. This approach is applied to a case study from UAE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major technical objectives of the RC-NSPES are to provide a framework for the concurrent operation of reactive and pro-active security functions to deliver efficient and optimised intrusion detection schemes as well as enhanced and highly correlated rule sets for more effective alerts management and root-cause analysis. The design and implementation of the RC-NSPES solution includes a number of innovative features in terms of real-time programmable embedded hardware (FPGA) deployment as well as in the integrated management station. These have been devised so as to deliver enhanced detection of attacks and contextualised alerts against threats that can arise from both the network layer and the application layer protocols. The resulting architecture represents an efficient and effective framework for the future deployment of network security systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study a minimum variance neuro self-tuning proportional-integral-derivative (PID) controller is designed for complex multiple input-multiple output (MIMO) dynamic systems. An approximation model is constructed, which consists of two functional blocks. The first block uses a linear submodel to approximate dominant system dynamics around a selected number of operating points. The second block is used as an error agent, implemented by a neural network, to accommodate the inaccuracy possibly introduced by the linear submodel approximation, various complexities/uncertainties, and complicated coupling effects frequently exhibited in non-linear MIMO dynamic systems. With the proposed model structure, controller design of an MIMO plant with n inputs and n outputs could be, for example, decomposed into n independent single input-single output (SISO) subsystem designs. The effectiveness of the controller design procedure is initially verified through simulations of industrial examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boolean input systems are in common used in the electric industry. Power supplies include such systems and the power converter represents these. For instance, in power electronics, the control variable are the switching ON and OFF of components as thyristors or transistors. The purpose of this paper is to use neural network (NN) to control continuous systems with Boolean inputs. This method is based on classification of system variations associated with input configurations. The classical supervised backpropagation algorithm is used to train the networks. The training of the artificial neural network and the control of Boolean input systems are presented. The design procedure of control systems is implemented on a nonlinear system. We apply those results to control an electrical system composed of an induction machine and its power converter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genetic analysis workshop 15 (GAW15) problem 1 contained baseline expression levels of 8793 genes in immortalised B cells from 194 individuals in 14 Centre d’Etude du Polymorphisme Humane (CEPH) Utah pedigrees. Previous analysis of the data showed linkage and association and evidence of substantial individual variations. In particular, correlation was examined on expression levels of 31 genes and 25 target genes corresponding to two master regulatory regions. In this analysis, we apply Bayesian network analysis to gain further insight into these findings. We identify strong dependences and therefore provide additional insight into the underlying relationships between the genes involved. More generally, the approach is expected to be applicable for integrated analysis of genes on biological pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information technologies are used across all stages of the construction process, and are crucial in the delivery of large projects. Drawing on detailed research on a construction megaproject, we take a practice-based approach to examining the practical and theoretical tensions between existing ways of working and the introduction of new coordination tools in this paper. We analyze the new hybrid practices that emerge, using insights from actor-network theory to articulate the delegation of actions to material and digital objects within ecologies of practice. The three vignettes that we discuss highlight this delegation of actions, the “plugging” and “patching” of ecologies occurring across media and the continual iterations of working practices between different types of media. By shifting the focus from tools to these wider ecologies of practice, the approach has important managerial mplications for the stabilization of new technologies and practices and for managing technological change on large construction projects. We conclude with a discussion of new directions for research, oriented to further elaborating on the importance of the material in understanding change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overseas trained teachers (OTTs) have grown in numbers during the past decade, particularly in London and the South East of England. In this recruitment explosion many OTTs have experienced difficulties. In professional literature as well as press coverage OTTs often become part of a deficit discourse. A small-scale pilot investigation of OTT experience has begun to suggest why OTTs have been successful as well as the principal challenges they have faced. An important factor in their success was felt to be the quality of support in school from others on the staff. Major challenges included the complexity of the primary curriculum. The argument that globalisation leads to brain-drain may be exaggerated. Suggestions for further research are made, which might indicate the positive benefits OTTs can bring to a school.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To introduce a new approach to problem-based learning (PBL) for self-directed learning in renal therapeutics. Design This 5-week course, designed for large student cohorts using minimal teaching resources, was based on a series of case studies and subsequent pharmaceutical care plans, followed by intensive and regular feedback from the instructor. Assessment Assessment of achievement of the learning outcomes was based on weekly-graded care plans and peer review assessment, allowing each student to judge the contributions of each group member and their own, along with a written case-study based examination. The pharmaceutical care plan template, designed using a “tick-box” system, significantly reduced staff time for feedback and scoring. Conclusion The proposed instructional model achieved the desired learning outcomes with appropriate student feedback, while promoting skills that are essential for the students' future careers as health care professionals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other uncertainties of the system are identified on-line by a neural network. The identified results are taken as compensation signals such that the robust adaptive control of nonlinear systems is realised. Simulation results are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coordination of design is a multi-faceted problem in construction. In design interactions in particular the real-time coordination of design activity is a persistent concern. The use of objects to coordinate the activity of design is studied as this happens in interactions between an architect and a building user group, in a setting where maintaining awareness of the design situation is important. An account of ways in which this was accomplished and how design activity is coordinated through interactional practices is provided. The empirical analyses examine design interaction from an ethnomethodological/conversation analysis (EM/CA) informed perspective to examine: ways in which mutual orientation to design issues are accomplished, how objects can provide a resource for the recognition of the activities of others and ways in which objects might be observable as momentarily intelligible. Subtle interactional practices involving talk, gesture and gaze were some of the small ways in which mutual orientation to the design actions of others became observable. The production of actions sequentially, in response to another's action, marked the real-time coordination of design moves in this setting. The relevance of accounts of micro-interaction to develop understanding of design activity and how it is coordinated are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.