900 resultados para Multi-scheme ensemble prediction system
Resumo:
This paper presents the Juste-Neige system for predicting the snow height on the ski runs of a resort using a multi-agent simulation software. Its aim is to facilitate snow cover management in order to i) reduce the production cost of artificial snow and to improve the profit margin for the companies managing the ski resorts; and ii) to reduce the water and energy consumption, and thus to reduce the environmental impact, by producing only the snow needed for a good skiing experience. The software provides maps with the predicted snow heights for up to 13 days. On these maps, the areas most exposed to snow erosion are highlighted. The software proceeds in three steps: i) interpolation of snow height measurements with a neural network; ii) local meteorological forecasts for every ski resort; iii) simulation of the impact caused by skiers using a multi-agent system. The software has been evaluated in the Swiss ski resort of Verbier and provides useful predictions.
Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis
Resumo:
A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s) by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s) that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR) in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.
Resumo:
This study aimed to investigate the influence of ankle osteoarthritis (AOA) treatments, i.e., ankle arthrodesis (AA) and total ankle replacement (TAR), on the kinematics of multi-segment foot and ankle complex during relatively long-distance gait. Forty-five subjects in four groups (AOA, AA, TAR, and control) were equipped with a wearable system consisting of inertial sensors installed on the tibia, calcaneus, and medial metatarsals. The subjects walked 50-m twice while the system measured the kinematic parameters of their multi-segment foot: the range of motion of joints between tibia, calcaneus, and medial metatarsals in three anatomical planes, and the peaks of angular velocity of these segments in the sagittal plane. These parameters were then compared among the four groups. It was observed that the range of motion and peak of angular velocities generally improved after TAR and were similar to the control subjects. However, unlike AOA and TAR, AA imposed impairments in the range of motion in the coronal plane for both the tibia-calcaneus and tibia-metatarsals joints. In general, the kinematic parameters showed significant correlation with established clinical scales (FFI and AOFAS), which shows their convergent validity. Based on the kinematic parameters of multi-segment foot during 50-m gait, this study showed significant improvements in foot mobility after TAR, but several significant impairments remained after AA.
Resumo:
Multi-resistant gram-negative rods are important pathogens in intensive care units (ICU), cause high rates of mortality, and need infection control measures to avoid spread to another patients. This study was undertaken prospectively with all of the patients hospitalized at ICU, Anesthesiology of the Hospital São Paulo, using the ICU component of the National Nosocomial Infection Surveillance System (NNIS) methodology, between March 1, 1997 and June 30, 1998. Hospital infections occurring during the first three months after the establishment of prevention and control measures (3/1/97 to 5/31/97) were compared to those of the last three months (3/1/98 to 5/31/98). In this period, 933 NNIS patients were studied, with 139 during the first period and 211 in the second period. The overall rates of infection by multi-resistant microorganisms in the first and second periods were, respectively, urinary tract infection: 3.28/1000 patients/day; 2.5/1000 patients/day; pneumonia: 2.10/1000 patients/day; 5.0/1000 patients/day; bloodstream infection: 1.09/1000 patients/day; 2.5/1000 patients/day. A comparison between overall infection rates of both periods (Wilcoxon test) showed no statistical significance (p = 0.067). The use of intervention measures effectively decreased the hospital bloodstream infection rate (p < 0.001), which shows that control measures in ICU can contribute to preventing hospital infections.
Resumo:
Kidneys are the main regulator of salt homeostasis and blood pressure. In the distal region of the tubule active Na-transport is finely tuned. This transport is regulated by various hormonal pathways including aldosterone that regulates the reabsorption at the level of the ASDN, comprising the late DCT, the CNT and the CCD. In the ASDN, the amiloride-sensitive epithelial Na-channel (ENaC) plays a major role in Na-homeostasis, as evidenced by gain-of function mutations in the genes encoding ENaC, causing Liddle's syndrome, a severe form of salt-sensitive hypertension. In this disease, regulation of ENaC is compromised due to mutations that delete or mutate a PY-motif in ENaC. Such mutations interfere with Nedd4-2- dependent ubiquitylation of ENaC, leading to reduced endocytosis of the channel, and consequently to increased channel activity at the cell surface. After endocytosis ENaC is targeted to the lysosome and rapidly degraded. Similarly to other ubiquitylated and endocytosed plasma membrane proteins (such as the EGFR), it is likely that the multi-protein complex system ESCRT is involved. To investigate the involvement of this system we tested the role of one of the ESCRT proteins, Tsg101. Here we show that Tsg101 interacts endogenously and in transfected HEK-293 cells with all three ENaC sub-units. Furthermore, mutations of cytoplasmic lysines of ENaC subunits lead to the disruption of this interaction, indicating a potential involvement of ubiquitin in Tsg101 / ENaC interaction. Tsg101 knockdown in renal epithelial cells increases the total and cell surface pool of ENaC, thus implying TsglOl and consequently the ESCRT system in ENaC degradation by the endosomal/lysosomal system. - Les reins sont les principaux organes responsables de la régulation de la pression artérielle ainsi que de la balance saline du corps. Dans la région distale du tubule, le transport actif de sodium est finement régulé. Ce transport est contrôlé par plusieurs hormones comme l'aldostérone, qui régule la réabsorption au niveau de l'ASDN, segment comprenant la fin du DCT, le CNT et le CCD. Dans l'ASDN, le canal à sodium épithélial sensible à l'amiloride (ENaC) joue un rôle majeur dans l'homéostasie sodique, comme cela fut démontré par les mutations « gain de fonction » dans les gênes encodant ENaC, causant ainsi le syndrome de Liddle, une forme sévère d'hypertension sensible au sel. Dans cette maladie, la régulation d'ENaC est compromise du fait des mutations qui supprime ou mute le domaine PY présent sur les sous-unités d'ENaC. Ces mutations préviennent l'ubiquitylation d'ENaC par Nedd4-2, conduisant ainsi à une baisse de l'endocytose du canal et par conséquent une activité accrue d'ENaC à la surface membranaire. Après endocytose, ENaC est envoyé vers le lysosome et rapidement dégradé. Comme d'autres protéines membranaires ubiquitylées et endocytées (comme l'EGFR), il est probable que le complexe multi-protéique ESCRT est impliqué dans le transport d'ENaC au lysosome. Pour étudier l'implication du système d'ESCRT dans la régulation d'ENaC nous avons testé le rôle d'une protéine de ces complexes, TsglOl. Notre étude nous a permis de démontrer que TsglOl se lie aux trois sous-unités ENaC aussi bien en co-transfection dans des cellules HEK-293 que de manière endogène. De plus, nous avons pu démontrer l'importance de l'ubiquitine dans cette interaction par la mutation de toutes les lysines placées du côté cytoplasmique des sous-unités d'ENaC, empêchant ainsi l'ubiquitylation de ces sous-unités. Enfin, le « knockdown » de TsglOl dans des cellules épithéliales de rein induit une augmentation de l'expression d'ENaC aussi bien dans le «pool» total qu'à la surface membranaire, indiquant ainsi un rôle pour TsglOl et par conséquent du système d'ESCRT dans la dégradation d'ENaC par la voie endosome / lysosome. - Le corps humain est composé d'organes chacun spécialisé dans une fonction précise. Chaque organe est composé de cellules, qui assurent la fonction de l'organe en question. Ces cellules se caractérisent par : - une membrane qui leur permet d'isoler leur compartiment interne (milieu intracellulaire ou cytoplasme) du liquide externe (milieu extracellulaire), - un noyau, où l'ADN est situé, - des protéines, sortent d'unités fonctionnelles ayant une fonction bien définie dans la cellule. La séparation entre l'extérieure et l'intérieure de la cellule est essentielle pour le maintien des composants de ces milieux ainsi que pour la bonne fonction de l'organisme et des cellules. Parmi ces composants, le sodium joue un rôle essentiel car il conditionne le maintien de volume sanguin en participant au maintien du volume extracellulaire. Une augmentation du sodium dans l'organisme provoque donc une augmentation du volume sanguin et ainsi provoque une hypertension. De ce fait, le contrôle de la quantité de sodium présente dans l'organisme est essentiel pour le bon fonctionnement de l'organisme. Le sodium est apporté par l'alimentation, et c'est au niveau du rein que va s'effectuer le contrôle de la quantité de sodium qui va être retenue dans l'organisme pour le maintien d'une concentration normale de sodium dans le milieu extracellulaire. Le rein va se charger de réabsorber toutes sortes de solutés nécessaires pour l'organisme avant d'évacuer les déchets ou le surplus de ces solutés en produisant l'urine. Le rein va se charger de réabsorber le sodium grâce à différentes protéines, parmi elle, nous nous sommes intéressés à une protéine appelée ENaC. Cette protéine joue un rôle important dans la réabsorption du sodium, et lorsqu'elle fonctionne mal, comme il a pu être observé dans certaines maladies génétiques, il en résulte des problèmes d'hypo- ou d'hypertension. Les problèmes résultant du mauvais fonctionnement de cette protéine obligent donc la cellule à réguler efficacement ENaC par différents mécanismes, notamment en diminuant son expression et en dégradant le « surplus ». Dans cette travail de thèse, nous nous sommes intéressés au mécanisme impliqué dans la dégradation d'ENaC et plus précisément à un ensemble de protéines, appelé ESCRT, qui va se charger « d'escorter » une protéine vers un sous compartiment à l'intérieur de la cellule ou elle sera dégradée.
Resumo:
Cet article présente une nouvelle situation, le Jeu du Pique-Nique, qui permet l'évaluation du fonctionnement familial, pris dans son ensemble, quel que soit le nombre d'enfants, âgés de quelques semaines à une douzaine d'années. L'évaluation est macroscopique, selon différentes dimensions comme le coparentage, la chaleur familiale, la dimension ludique, l'autonomie des enfants, etc. Pour illustrer la richesse des observations qu'offre cette situation, les jeux de trois familles contrastées sont présentés ainsi que leur codage. L'utilité en recherche ainsi qu'en clinique, et en particulier l'apport de la vision du film avec la famille, est discutée.
Resumo:
About 4 million households in the UK cannot adequately heat their homes in winter due to low income and poor quality housing, the two main causes of fuel poverty. The primary impact of fuel poverty is cold homes in winter which can lead to various health problems and even death among the vulnerable young and the elderly population. The government launched the Warm Front scheme in 2000 to tackle fuel poverty among the vulnerable households in England by providing energy efficiency measures in the forms insulation and modern heating system(??). By 2004, about 770,000 households had benefited from the Warm Front scheme and a total of 2 million households are still expected to benefit by 2010. Since 2001, the Bartlett has been investigating with London School of Hygiene & Tropical Medicine and Sheffield Hallam University, the health and the environmental impact of the Warm Front scheme. This investigative study is the most detailed to date on fuel poor dwellings based on detailed surveys of household and dwelling data, fuel consumption record and monitored temperature and relative humidity from 3,100 dwellings before and after the energy efficiency measures. The Warm Front investigation was expected to continue until the end of 2007. The findings from the investigation indicated that the Warm Front scheme was likely to have benefits in terms of improved thermal comfort and well-being as a result of mean temperature rise of 1.6C in the living room and 2.8C in the bedroom. Warm Front also lead to a decrease in indoor relative humidity mainly from the increased temperature since there appeared to be little impact on vapour pressure from changes in air tightness. Pressure test results indicated that the effects of air tightness measures such as draught stripping and cavity wall insulation were offset by the installation of a central heating system, particularly when the pipe work feeding radiators was installed below timber floors.
Resumo:
El treball final de carrera 'HISMED', es basa en l'anàlisi, disseny, investigació e implementació d'una aplicació dins l'àmbit assistencial sanitari amb la premissa de voler ser un sistema per oferir un servei sanitari de millor qualitat, i crear un entorn en el qual investigadors, laboratoris, metges i personal docent comparteixen dades amb una rellevància cabdal per les seves professions. Oferint-los una eina de consulta molt potent en quant a l'obtenció de dades clíniques, que els permet explotar la informació segons convingui el cas.
Resumo:
BACKGROUND: As embryo selection is not allowed by law in Switzerland, we need a single early scoring system to identify zygotes with high implantation potential and to select zygotes for fresh transfer or cryopreservation. The underlying aim is to maximize the cumulated pregnancy rate while limiting the number of multiple pregnancies. METHODS: In all, 613 fresh and 617 frozen-thawed zygotes were scored for proximity, orientation and centring of the pronuclei, cytoplasmic halo, and number and polarization of the nucleolar precursor bodies. From these individual scores, a cumulated pronuclear score (CPNS) was calculated. Correlation between CPNS and implantation was examined and compared between fresh and frozen-thawed zygotes. The effect of freezing on CPNS was also investigated. RESULTS: CPNS was positively associated with embryo implantation in both fresh and frozen zygotes. With similar CPNS, frozen zygotes presented implantation rates as high as those of fresh zygotes. Nucleolar precursor bodies pattern and cytoplasmic halo appeared as the most important factors predictive of implantation for both types of zygotes, while pronuclei position was specifically relevant for frozen-thawed zygotes. Freezing induced an alteration of most zygote parameters, resulting in a significantly lower CPNS and a lower pregnancy rate. CONCLUSIONS: CPNS may be used as a single prognostic tool for implantation of both fresh and frozen-thawed zygotes. Lower CPNS values of frozen-thawed zygotes may also be indicative of freezing damage to zygotes. Successful implantation of frozen zygotes despite lower CPNS suggests that they may recover after thawing and in vitro culture.
Resumo:
Background. A software based tool has been developed (Optem) to allow automatize the recommendations of the Canadian Multiple Sclerosis Working Group for optimizing MS treatment in order to avoid subjective interpretation. METHODS: Treatment Optimization Recommendations (TORs) were applied to our database of patients treated with IFN beta1a IM. Patient data were assessed during year 1 for disease activity, and patients were assigned to 2 groups according to TOR: "change treatment" (CH) and "no change treatment" (NCH). These assessments were then compared to observed clinical outcomes for disease activity over the following years. RESULTS: We have data on 55 patients. The "change treatment" status was assigned to 22 patients, and "no change treatment" to 33 patients. The estimated sensitivity and specificity according to last visit status were 73.9% and 84.4%. During the following years, the Relapse Rate was always higher in the "change treatment" group than in the "no change treatment" group (5 y; CH: 0.7, NCH: 0.07; p < 0.001, 12 m - last visit; CH: 0.536, NCH: 0.34). We obtained the same results with the EDSS (4 y; CH: 3.53, NCH: 2.55, annual progression rate in 12 m - last visit; CH: 0.29, NCH: 0.13). CONCLUSION: Applying TOR at the first year of therapy allowed accurate prediction of continued disease activity in relapses and disability progression.
Resumo:
OBJECTIVES: To test whether the Global Positioning System (GPS) could be potentially useful to assess the velocity of walking and running in humans. SUBJECT: A young man was equipped with a GPS receptor while walking running and cycling at various velocity on an athletic track. The speed of displacement assessed by GPS, was compared to that directly measured by chronometry (76 tests). RESULTS: In walking and running conditions (from 2-20 km/h) as well as cycling conditions (from 20-40 km/h), there was a significant relationship between the speed assessed by GPS and that actually measured (r = 0.99, P < 0.0001) with little bias in the prediction of velocity. The overall error of prediction (s.d. of difference) averaged +/-0.8 km/h. CONCLUSION: The GPS technique appears very promising for speed assessment although the relative accuracy at walking speed is still insufficient for research purposes. It may be improved by using differential GPS measurement.
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
We present a system for dynamic network resource configuration in environments with bandwidth reservation and path restoration mechanisms. Our focus is on the dynamic bandwidth management results, although the main goal of the system is the integration of the different mechanisms that manage the reserved paths (bandwidth, restoration, and spare capacity planning). The objective is to avoid conflicts between these mechanisms. The system is able to dynamically manage a logical network such as a virtual path network in ATM or a label switch path network in MPLS. This system has been designed to be modular in the sense that in can be activated or deactivated, and it can be applied only in a sub-network. The system design and implementation is based on a multi-agent system (MAS). We also included details of its architecture and implementation
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted to developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas less has been done to predict the activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES2. The study involved first a homology modeling of the hCES2 protein based on the model of hCES1 since the two proteins share a high degree of homology (congruent with 73%). A set of 40 known substrates of hCES2 was taken from the literature; the ligands were docked in both their neutral and ionized forms using GriDock, a parallel tool based on the AutoDock4.0 engine which can perform efficient and easy virtual screening analyses of large molecular databases exploiting multi-core architectures. Useful statistical models (e.g., r (2) = 0.91 for substrates in their unprotonated state) were calculated by correlating experimental pK(m) values with distance between the carbon atom of the substrate's ester group and the hydroxy function of Ser228. Additional parameters in the equations accounted for hydrophobic and electrostatic interactions between substrates and contributing residues. The negatively charged residues in the hCES2 cavity explained the preference of the enzyme for neutral substrates and, more generally, suggested that ligands which interact too strongly by ionic bonds (e.g., ACE inhibitors) cannot be good CES2 substrates because they are trapped in the cavity in unproductive modes and behave as inhibitors. The effects of protonation on substrate recognition and the contrasting behavior of substrates and products were finally investigated by MD simulations of some CES2 complexes.