878 resultados para Multi-resolution Method
Resumo:
We analyse the influence of colour information in optical flow methods. Typically, most of these techniques compute their solutions using grayscale intensities due to its simplicity and faster processing, ignoring the colour features. However, the current processing systems have minimized their computational cost and, on the other hand, it is reasonable to assume that a colour image offers more details from the scene which should facilitate finding better flow fields. The aim of this work is to determine if a multi-channel approach supposes a quite enough improvement to justify its use. In order to address this evaluation, we use a multi-channel implementation of a well-known TV-L1 method. Furthermore, we review the state-of-the-art in colour optical flow methods. In the experiments, we study various solutions using grayscale and RGB images from recent evaluation datasets to verify the colour benefits in motion estimation.
Resumo:
This volume is a collection of the work done in a three years-lasting PhD, focused in the analysis of Central and Southern Adriatic marine sediments, deriving from the collection of a borehole and many cores, achieved thanks to the good seismic-stratigraphic knowledge of the study area. The work was made out within European projects EC-EURODELTA (coordinated by Fabio Trincardi, ISMAR-CNR), EC-EUROSTRATAFORM (coordinated by Phil P. E. Weaver, NOC, UK), and PROMESS1 (coordinated by Serge Bernè, IFREMER, France). The analysed sedimentary successions presented highly expanded stratigraphic intervals, particularly for the last 400 kyr, 60 kyr and 6 kyr BP. These three different time-intervals resulted in a tri-partition of the PhD thesis. The study consisted of the analysis of planktic and benthic foraminifers’ assemblages (more than 560 samples analysed), as well as in preparing the material for oxygen and carbon stable isotope analyses, and interpreting and discussing the obtained dataset. The chronologic framework of the last 400 kyr was achieved for borehole PRAD1-2 (within the work-package WP6 of PROMESS1 project), collected in 186.5 m water depth. The proposed chronology derives from a multi-disciplinary approach, consisting of the integration of numerous and independent proxies, some of which analysed by other specialists within the project. The final framework based on: micropaleontology (calcareous nannofossils and foraminifers’ bioevents), climatic cyclicity (foraminifers’ assemblages), geochemistry (oxygen stable isotope, made out on planktic and benthic records), paleomagnetism, radiometric ages (14C AMS), teprhochronology, identification of sapropel-equivalent levels (Se). It’s worth to note the good consistency between the oxygen stable isotope curve obtained for borehole PRAD1-2 and other deeper Mediterranean records. The studied proxies allowed the recognition of all the isotopic intervals from MIS10 to MIS1 in PRAD1-2 record, and the base of the borehole has been ascribed to the early MIS11. Glacial and interglacial intervals identified in the Central Adriatic record have been analysed in detail for the paleo-environmental reconstruction, as well. For instance, glacial stages MIS6, MIS8 and MIS10 present peculiar foraminifers’ assemblages, composed by benthic species typical of polar regions and no longer living in the Central Adriatic nowadays. Moreover, a deepening trend in the paleo-bathymetry during glacial intervals was observed, from MIS10 (inner-shelf environment) to MIS4 (mid-shelf environment).Ten sapropel-equivalent levels have been recognised in PRAD1-2 Central Adriatic record. They showed different planktic foraminifers’ assemblages, which allowed the first distinction of events occurred during warm-climate (Se5, Se7), cold-climate (Se4, Se6 and Se8) and temperate-intermediate-climate (Se1, Se3, Se9, Se’, Se10) conditions, consistently with literature. Cold-climate sapropel equivalents are characterised by the absence of an oligotrophic phase, whereas warm-temeprate-climate sapropel equivalents present both the oligotrophic and the eutrophic phases (except for Se1). Sea floor conditions vary, according to benthic foraminifers’ assemblages, from relatively well oxygenated (Se1, Se3), to dysoxic (Se9, Se’, Se10), to highly dysoxic (Se4, Se6, Se8) to events during which benthic foraminifers are absent (Se5, Se7). These two latter levels are also characterised by the lamination of the sediment, feature never observed in literature in such shallow records. The enhanced stratification of the water column during the events Se8, Se7, Se6, Se5, Se4, and the concurring strong dilution of shallow water, pointed out by the isotope record, lead to the hypothesis of a period of intense precipitation in the Central Adriatic region, possibly due to a northward shift of the African Monsoon. Finally, the expression of Central Adriatic PRAD1-2 Se5 equivalent was compared with the same event, as registered in other Eastern Mediterranean areas. The sequence of substantially the same planktic foraminifers’ bioevents has been consistently recognised, indicating a similar evolution of the water column all over the Eastern Mediterranean; yet, the synchronism of these events cannot be demonstrated. A high resolution analysis of late Holocene (last 6000 years BP) climate change was carried out for the Adriatic area, through the recognition of planktic and benthic foraminifers’ bioevents. In particular, peaks of planktic Globigerinoides sacculifer (four during the last 5500 years BP in the most expanded core) have been interpreted, based on the ecological requirements of this species, as warm-climate, arid intervals, correspondent to periods of relative climatic optimum, such as, for instance, the Medieval Warm Period, the Roman Age, the Late Bronze Age and the Copper Age. Consequently, the minima in the abundance of this biomarker could correspond to relatively cooler and more rainy periods. These conclusions are in good agreement with the isotopic and the pollen data. The Last Occurrence (LO) of G. sacculifer has been dated in this work at an average age of 550 years BP, and it is the best bioevent approximating the base of the Little Ice Age in the Adriatic. Recent literature reports the same bioevent in the Levantine Basin, showing a rather consistent age. Therefore, the LO of G. sacculifer has the potential to be extended to all the Eastern Mediterranean. Within the Little Ice Age, benthic foraminifer V. complanata shows two distinct peaks in the shallower Adriatic cores analysed, collected hundred kilometres apart, inside the mud belt environment. Based on the ecological requirements of this species, these two peaks have been interpreted as the more intense (cold and rainy) oscillations inside the LIA. The chronologic framework of the analysed cores is robust, being based on several range-finding 14C AMS ages, on estimates of the secular variation of the magnetic field, on geochemical estimates of the activity depth of 210Pb short-lived radionuclide (for the core-top ages), and is in good agreement with tephrochronologic, pollen and foraminiferal data. The intra-holocenic climate oscillations find out in the Adriatic have been compared with those pointed out in literature from other records of the Northern Hemisphere, and the chronologic constraint seems quite good. Finally, the sedimentary successions analysed allowed the review and the update of the foraminifers’ ecobiostratigraphy available from literature for the Adriatic region, thanks to the achievement of 16 ecobiozones for the last 60 kyr BP. Some bioevents are restricted to the Central Adriatic (for instance the LO of benthic Hyalinea balthica , approximating the MIS3/MIS2 boundary), others occur all over the Adriatic basin (for instance the LO of planktic Globorotalia inflata during MIS3, individuating Dansgaard-Oeschger cycle 8 (Denekamp)).
Resumo:
A new multi-energy CT for small animals is being developed at the Physics Department of the University of Bologna, Italy. The system makes use of a set of quasi-monochromatic X-ray beams, with energy tunable in a range from 26 KeV to 72 KeV. These beams are produced by Bragg diffraction on a Highly Oriented Pyrolytic Graphite crystal. With quasi-monochromatic sources it is possible to perform multi-energy investigation in a more effective way, as compared with conventional X-ray tubes. Multi-energy techniques allow extracting physical information from the materials, such as effective atomic number, mass-thickness, density, that can be used to distinguish and quantitatively characterize the irradiated tissues. The aim of the system is the investigation and the development of new pre-clinic methods for the early detection of the tumors in small animals. An innovative technique, the Triple-Energy Radiography with Contrast Medium (TER), has been successfully implemented on our system. TER consist in combining a set of three quasi-monochromatic images of an object, in order to obtain a corresponding set of three single-tissue images, which are the mass-thickness map of three reference materials. TER can be applied to the quantitative mass-thickness-map reconstruction of a contrast medium, because it is able to remove completely the signal due to other tissues (i.e. the structural background noise). The technique is very sensitive to the contrast medium and is insensitive to the superposition of different materials. The method is a good candidate to the early detection of the tumor angiogenesis in mice. In this work we describe the tomographic system, with a particular focus on the quasi-monochromatic source. Moreover the TER method is presented with some preliminary results about small animal imaging.
Resumo:
[EN]A boundary element-finite element model is presented for the three-dimensional dynamic analysis of piled buildings in the frequency domain. Piles are modelled as compressible Euler-Bernoulli beams founded on a linear, isotropic, viscoelastic, zoned-homogeneous, unbounded layered soil, while multi-storey buildings are assumed to be comprised of vertical compressible piers and rigid slabs.
Resumo:
The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of tropospheric trace consituents. NO2 is an important trace gas in the lower troposphere due to the fact that it is involved in the production of tropospheric ozone; ozone and nitrogen dioxide are key factors in determining the quality of air with consequences, for example, on human health and the growth of vegetation. To understand the NO2 and ozone chemistry in more detail not only the concentrations at ground but also the acquisition of the vertical distribution is necessary. In fact, the budget of nitrogen oxides and ozone in the atmosphere is determined both by local emissions and non-local chemical and dynamical processes (i.e. diffusion and transport at various scales) that greatly impact on their vertical and temporal distribution: thus a tool to resolve the vertical profile information is really important. Useful measurement techniques for atmospheric trace species should fulfill at least two main requirements. First, they must be sufficiently sensitive to detect the species under consideration at their ambient concentration levels. Second, they must be specific, which means that the results of the measurement of a particular species must be neither positively nor negatively influenced by any other trace species simultaneously present in the probed volume of air. Air monitoring by spectroscopic techniques has proven to be a very useful tool to fulfill these desirable requirements as well as a number of other important properties. During the last decades, many such instruments have been developed which are based on the absorption properties of the constituents in various regions of the electromagnetic spectrum, ranging from the far infrared to the ultraviolet. Among them, Differential Optical Absorption Spectroscopy (DOAS) has played an important role. DOAS is an established remote sensing technique for atmospheric trace gases probing, which identifies and quantifies the trace gases in the atmosphere taking advantage of their molecular absorption structures in the near UV and visible wavelengths of the electromagnetic spectrum (from 0.25 μm to 0.75 μm). Passive DOAS, in particular, can detect the presence of a trace gas in terms of its integrated concentration over the atmospheric path from the sun to the receiver (the so called slant column density). The receiver can be located at ground, as well as on board an aircraft or a satellite platform. Passive DOAS has, therefore, a flexible measurement configuration that allows multiple applications. The ability to properly interpret passive DOAS measurements of atmospheric constituents depends crucially on how well the optical path of light collected by the system is understood. This is because the final product of DOAS is the concentration of a particular species integrated along the path that radiation covers in the atmosphere. This path is not known a priori and can only be evaluated by Radiative Transfer Models (RTMs). These models are used to calculate the so called vertical column density of a given trace gas, which is obtained by dividing the measured slant column density to the so called air mass factor, which is used to quantify the enhancement of the light path length within the absorber layers. In the case of the standard DOAS set-up, in which radiation is collected along the vertical direction (zenith-sky DOAS), calculations of the air mass factor have been made using “simple” single scattering radiative transfer models. This configuration has its highest sensitivity in the stratosphere, in particular during twilight. This is the result of the large enhancement in stratospheric light path at dawn and dusk combined with a relatively short tropospheric path. In order to increase the sensitivity of the instrument towards tropospheric signals, measurements with the telescope pointing the horizon (offaxis DOAS) have to be performed. In this circumstances, the light path in the lower layers can become very long and necessitate the use of radiative transfer models including multiple scattering, the full treatment of atmospheric sphericity and refraction. In this thesis, a recent development in the well-established DOAS technique is described, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS). The MAX-DOAS consists in the simultaneous use of several off-axis directions near the horizon: using this configuration, not only the sensitivity to tropospheric trace gases is greatly improved, but vertical profile information can also be retrieved by combining the simultaneous off-axis measurements with sophisticated RTM calculations and inversion techniques. In particular there is a need for a RTM which is capable of dealing with all the processes intervening along the light path, supporting all DOAS geometries used, and treating multiple scattering events with varying phase functions involved. To achieve these multiple goals a statistical approach based on the Monte Carlo technique should be used. A Monte Carlo RTM generates an ensemble of random photon paths between the light source and the detector, and uses these paths to reconstruct a remote sensing measurement. Within the present study, the Monte Carlo radiative transfer model PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) has been developed and used to correctly interpret the slant column densities obtained from MAX-DOAS measurements. In order to derive the vertical concentration profile of a trace gas from its slant column measurement, the AMF is only one part in the quantitative retrieval process. One indispensable requirement is a robust approach to invert the measurements and obtain the unknown concentrations, the air mass factors being known. For this purpose, in the present thesis, we have used the Chahine relaxation method. Ground-based Multiple AXis DOAS, combined with appropriate radiative transfer models and inversion techniques, is a promising tool for atmospheric studies in the lower troposphere and boundary layer, including the retrieval of profile information with a good degree of vertical resolution. This thesis has presented an application of this powerful comprehensive tool for the study of a preserved natural Mediterranean area (the Castel Porziano Estate, located 20 km South-West of Rome) where pollution is transported from remote sources. Application of this tool in densely populated or industrial areas is beginning to look particularly fruitful and represents an important subject for future studies.
Resumo:
Congresos y conferencias
Resumo:
Technology scaling increasingly emphasizes complexity and non-ideality of the electrical behavior of semiconductor devices and boosts interest on alternatives to the conventional planar MOSFET architecture. TCAD simulation tools are fundamental to the analysis and development of new technology generations. However, the increasing device complexity is reflected in an augmented dimensionality of the problems to be solved. The trade-off between accuracy and computational cost of the simulation is especially influenced by domain discretization: mesh generation is therefore one of the most critical steps and automatic approaches are sought. Moreover, the problem size is further increased by process variations, calling for a statistical representation of the single device through an ensemble of microscopically different instances. The aim of this thesis is to present multi-disciplinary approaches to handle this increasing problem dimensionality in a numerical simulation perspective. The topic of mesh generation is tackled by presenting a new Wavelet-based Adaptive Method (WAM) for the automatic refinement of 2D and 3D domain discretizations. Multiresolution techniques and efficient signal processing algorithms are exploited to increase grid resolution in the domain regions where relevant physical phenomena take place. Moreover, the grid is dynamically adapted to follow solution changes produced by bias variations and quality criteria are imposed on the produced meshes. The further dimensionality increase due to variability in extremely scaled devices is considered with reference to two increasingly critical phenomena, namely line-edge roughness (LER) and random dopant fluctuations (RD). The impact of such phenomena on FinFET devices, which represent a promising alternative to planar CMOS technology, is estimated through 2D and 3D TCAD simulations and statistical tools, taking into account matching performance of single devices as well as basic circuit blocks such as SRAMs. Several process options are compared, including resist- and spacer-defined fin patterning as well as different doping profile definitions. Combining statistical simulations with experimental data, potentialities and shortcomings of the FinFET architecture are analyzed and useful design guidelines are provided, which boost feasibility of this technology for mainstream applications in sub-45 nm generation integrated circuits.
Resumo:
[EN]This Ph.D. thesis presents a general, robust methodology that may cover any type of 2D acoustic optimization problem. A procedure involving the coupling of Boundary Elements (BE) and Evolutionary Algorithms is proposed for systematic geometric modifications of road barriers that lead to designs with ever-increasing screening performance. Numerical simulations involving single- and multi-objective optimizations of noise barriers of varied nature are included in this document. results disclosed justify the implementation of this methodology by leading to optimal solutions of previously defined topologies that, in general, greatly outperform the acoustic efficiency of classical, widely used barrier designs normally erected near roads.
Resumo:
Research in art conservation has been developed from the early 1950s, giving a significant contribution to the conservation-restoration of cultural heritage artefacts. In fact, only through a profound knowledge about the nature and conditions of constituent materials, suitable decisions on the conservation and restoration measures can thus be adopted and preservation practices enhanced. The study of ancient artworks is particularly challenging as they can be considered as heterogeneous and multilayered systems where numerous interactions between the different components as well as degradation and ageing phenomena take place. However, difficulties to physically separate the different layers due to their thickness (1-200 µm) can result in the inaccurate attribution of the identified compounds to a specific layer. Therefore, details can only be analysed when the sample preparation method leaves the layer structure intact, as for example the preparation of embedding cross sections in synthetic resins. Hence, spatially resolved analytical techniques are required not only to exactly characterize the nature of the compounds but also to obtain precise chemical and physical information about ongoing changes. This thesis focuses on the application of FTIR microspectroscopic techniques for cultural heritage materials. The first section is aimed at introducing the use of FTIR microscopy in conservation science with a particular attention to the sampling criteria and sample preparation methods. The second section is aimed at evaluating and validating the use of different FTIR microscopic analytical methods applied to the study of different art conservation issues which may be encountered dealing with cultural heritage artefacts: the characterisation of the artistic execution technique (chapter II-1), the studies on degradation phenomena (chapter II-2) and finally the evaluation of protective treatments (chapter II-3). The third and last section is divided into three chapters which underline recent developments in FTIR spectroscopy for the characterisation of paint cross sections and in particular thin organic layers: a newly developed preparation method with embedding systems in infrared transparent salts (chapter III-1), the new opportunities offered by macro-ATR imaging spectroscopy (chapter III-2) and the possibilities achieved with the different FTIR microspectroscopic techniques nowadays available (chapter III-3). In chapter II-1, FTIR microspectroscopy as molecular analysis, is presented in an integrated approach with other analytical techniques. The proposed sequence is optimized in function of the limited quantity of sample available and this methodology permits to identify the painting materials and characterise the adopted execution technique and state of conservation. Chapter II-2 describes the characterisation of the degradation products with FTIR microscopy since the investigation on the ageing processes encountered in old artefacts represents one of the most important issues in conservation research. Metal carboxylates resulting from the interaction between pigments and binding media are characterized using synthesised metal palmitates and their production is detected on copper-, zinc-, manganese- and lead- (associated with lead carbonate) based pigments dispersed either in oil or egg tempera. Moreover, significant effects seem to be obtained with iron and cobalt (acceleration of the triglycerides hydrolysis). For the first time on sienna and umber paints, manganese carboxylates are also observed. Finally in chapter II-3, FTIR microscopy is combined with further elemental analyses to characterise and estimate the performances and stability of newly developed treatments, which should better fit conservation-restoration problems. In the second part, in chapter III-1, an innovative embedding system in potassium bromide is reported focusing on the characterisation and localisation of organic substances in cross sections. Not only the identification but also the distribution of proteinaceous, lipidic or resinaceous materials, are evidenced directly on different paint cross sections, especially in thin layers of the order of 10 µm. Chapter III-2 describes the use of a conventional diamond ATR accessory coupled with a focal plane array to obtain chemical images of multi-layered paint cross sections. A rapid and simple identification of the different compounds is achieved without the use of any infrared microscope objectives. Finally, the latest FTIR techniques available are highlighted in chapter III-3 in a comparative study for the characterisation of paint cross sections. Results in terms of spatial resolution, data quality and chemical information obtained are presented and in particular, a new FTIR microscope equipped with a linear array detector, which permits reducing the spatial resolution limit to approximately 5 µm, provides very promising results and may represent a good alternative to either mapping or imaging systems.
Resumo:
Human reactions to vibration have been extensively investigated in the past. Vibration, as well as whole-body vibration (WBV), has been commonly considered as an occupational hazard for its detrimental effects on human condition and comfort. Although long term exposure to vibrations may produce undesirable side-effects, a great part of the literature is dedicated to the positive effects of WBV when used as method for muscular stimulation and as an exercise intervention. Whole body vibration training (WBVT) aims to mechanically activate muscles by eliciting neuromuscular activity (muscle reflexes) via the use of vibrations delivered to the whole body. The most mentioned mechanism to explain the neuromuscular outcomes of vibration is the elicited neuromuscular activation. Local tendon vibrations induce activity of the muscle spindle Ia fibers, mediated by monosynaptic and polysynaptic pathways: a reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises in response to such vibratory stimulus. In WBVT mechanical vibrations, in a range from 10 to 80 Hz and peak to peak displacements from 1 to 10 mm, are usually transmitted to the patient body by the use of oscillating platforms. Vibrations are then transferred from the platform to a specific muscle group through the subject body. To customize WBV treatments, surface electromyography (SEMG) signals are often used to reveal the best stimulation frequency for each subject. Use of SEMG concise parameters, such as root mean square values of the recordings, is also a common practice; frequently a preliminary session can take place in order to discover the more appropriate stimulation frequency. Soft tissues act as wobbling masses vibrating in a damped manner in response to mechanical excitation; Muscle Tuning hypothesis suggest that neuromuscular system works to damp the soft tissue oscillation that occurs in response to vibrations; muscles alters their activity to dampen the vibrations, preventing any resonance phenomenon. Muscle response to vibration is however a complex phenomenon as it depends on different parameters, like muscle-tension, muscle or segment-stiffness, amplitude and frequency of the mechanical vibration. Additionally, while in the TVR study the applied vibratory stimulus and the muscle conditions are completely characterised (a known vibration source is applied directly to a stretched/shortened muscle or tendon), in WBV study only the stimulus applied to a distal part of the body is known. Moreover, mechanical response changes in relation to the posture. The transmissibility of vibratory stimulus along the body segment strongly depends on the position held by the subject. The aim of this work was the investigation on the effects that the use of vibrations, in particular the effects of whole body vibrations, may have on muscular activity. A new approach to discover the more appropriate stimulus frequency, by the use of accelerometers, was also explored. Different subjects, not affected by any known neurological or musculoskeletal disorders, were voluntarily involved in the study and gave their informed, written consent to participate. The device used to deliver vibration to the subjects was a vibrating platform. Vibrations impressed by the platform were exclusively vertical; platform displacement was sinusoidal with an intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency ranging from 10 to 80 Hz. All the subjects familiarized with the device and the proper positioning. Two different posture were explored in this study: position 1 - hack squat; position 2 - subject standing on toes with heels raised. SEMG signals from the Rectus Femoris (RF), Vastus Lateralis (VL) and Vastus medialis (VM) were recorded. SEMG signals were amplified using a multi-channel, isolated biomedical signal amplifier The gain was set to 1000 V/V and a band pass filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to suppress line interference. Tiny and lightweight (less than 10 g) three-axial MEMS accelerometers (Freescale semiconductors) were used to measure accelerations of onto patient’s skin, at EMG electrodes level. Accelerations signals provided information related to individuals’ RF, Biceps Femoris (BF) and Gastrocnemius Lateralis (GL) muscle belly oscillation; they were pre-processed in order to exclude influence of gravity. As demonstrated by our results, vibrations generate peculiar, not negligible motion artifact on skin electrodes. Artifact amplitude is generally unpredictable; it appeared in all the quadriceps muscles analysed, but in different amounts. Artifact harmonics extend throughout the EMG spectrum, making classic high-pass filters ineffective; however, their contribution was easy to filter out from the raw EMG signal with a series of sharp notch filters centred at the vibration frequency and its superior harmonics (1.5 Hz wide). However, use of these simple filters prevents the revelation of EMG power potential variation in the mentioned filtered bands. Moreover our experience suggests that the possibility of reducing motion artefact, by using particular electrodes and by accurately preparing the subject’s skin, is not easily viable; even though some small improvements were obtained, it was not possible to substantially decrease the artifact. Anyway, getting rid of those artifacts lead to some true EMG signal loss. Nevertheless, our preliminary results suggest that the use of notch filters at vibration frequency and its harmonics is suitable for motion artifacts filtering. In RF SEMG recordings during vibratory stimulation only a little EMG power increment should be contained in the mentioned filtered bands due to synchronous electromyographic activity of the muscle. Moreover, it is better to remove the artifact that, in our experience, was found to be more than 40% of the total signal power. In summary, many variables have to be taken into account: in addition to amplitude, frequency and duration of vibration treatment, other fundamental variables were found to be subject anatomy, individual physiological condition and subject’s positioning on the platform. Studies on WBV treatments that include surface EMG analysis to asses muscular activity during vibratory stimulation should take into account the presence of motion artifacts. Appropriate filtering of artifacts, to reveal the actual effect on muscle contraction elicited by vibration stimulus, is mandatory. However as a result of our preliminary study, a simple multi-band notch filtering may help to reduce randomness of the results. Muscle tuning hypothesis seemed to be confirmed. Our results suggested that the effects of WBV are linked to the actual muscle motion (displacement). The greater was the muscle belly displacement the higher was found the muscle activity. The maximum muscle activity has been found in correspondence with the local mechanical resonance, suggesting a more effective stimulation at the specific system resonance frequency. Holding the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization could be obtained by simply monitoring local acceleration (resonance). However, our study revealed some short term effects of vibratory stimulus; prolonged studies should be assembled in order to consider the long term effectiveness of these results. Since local stimulus depends on the kinematic chain involved, WBV muscle stimulation has to take into account the transmissibility of the stimulus along the body segment in order to ensure that vibratory stimulation effectively reaches the target muscle. Combination of local resonance and muscle response should also be further investigated to prevent hazards to individuals undergoing WBV treatments.
Resumo:
The theory of the 3D multipole probability tomography method (3D GPT) to image source poles, dipoles, quadrupoles and octopoles, of a geophysical vector or scalar field dataset is developed. A geophysical dataset is assumed to be the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct without a priori assumptions the most probable position and shape of the true geophysical buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. This theory, then, is adapted to the geoelectrical, gravity and self potential methods. A few synthetic examples using simple geometries and three field examples are discussed in order to demonstrate the notably enhanced resolution power of the new approach. At first, the application to a field example related to a dipole–dipole geoelectrical survey carried out in the archaeological park of Pompei is presented. The survey was finalised to recognize remains of the ancient Roman urban network including roads, squares and buildings, which were buried under the thick pyroclastic cover fallen during the 79 AD Vesuvius eruption. The revealed anomaly structures are ascribed to wellpreserved remnants of some aligned walls of Roman edifices, buried and partially destroyed by the 79 AD Vesuvius pyroclastic fall. Then, a field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging as accurately as possible the differential mass density structure within the first few km of depth inside the volcanic apparatus. An assemblage of vertical prismatic blocks appears to be the most probable gravity model of the Etna apparatus within the first 5 km of depth below sea level. Finally, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..
Resumo:
Resonante Laserionisations-Massenspektrometrie an Gadolinium zur Isotopenhäufigkeitsanalyse mit geringsten Mengen Die selektive Spuren- und Ultraspurenanalyse des Erdalkalielements Gadolinium eröffnet eine Vielzahl von Anwendungen in der Biomedizin und Kosmochemie. Zum Erreichen der hohen Anforderungen bezüglich Isotopen- und Isobarenselektivität von S>10^7 sowie Gesamteffizienz von e>10^-6 wurde der Einsatz der resonanten Laserionisations-Massenspektrometrie untersucht. Dazu erfolgte die Weiterentwicklung und Anpassung des existierenden Diodenlaser-Quadrupolmassenspektrometersystems. Durch Ionenflugbahn-Simulationsrechnungen wurde für das Quadrupol-Massenspektrometer die erreichbare Nachbarmassenunterdrückung und Transmission in Abhängigkeit von der Auflösung theoretisch vorhergesagt. Die Werte wurden experimentell bestätigt. Aus der beobachteten Peakstruktur erfolgte die Ableitung einer Methode zur Bestimmung der Energieunschärfe des eingesetzten Ionisationsprozesses. Zum Auffinden eines effizienten dreifach resonanten Anregungsschemas wurden die Isotopieverschiebungen und Hyperfeinstrukturen aller stabilen Gadoliniumisotope in zahlreichen Übergängen für die einfach, zweifach und dreifach resonante Ionisation präzise vermessen. Das aufgenommene Spektrum autoionisierender Resonanzen zeigte etwa 150 bislang unbekannter Zustände mit Resonanzüberhöhungen von bis zu fünf Größenordnungen im Ionisationswirkungsquerschnitt. Die entwickelte Methode der Hyperfeinzustandsselektion ermöglichte die Bestimmung der Drehimpulsquantenzahl J der autoionisierenden Resonanzen. Die analytische Charakterisierung der dreistufig resonanten Ionisation von Gadolinium ergab eine Isotopen- und Isobarenselektivität von S(Isotop)>10^12 und S(Isobar)>10^7. Die mit dem Diodenlasersystem erreichte Nachweiseffizienz von e=1-3x10^-6 mit einer untergrundlimitierten Nachweisgrenze von wenigen 10^9 Atomen Gd-158 erlaubte erste Demonstrationsmessungen an medizinischen Gewebeproben.
Resumo:
Natural hazard related to the volcanic activity represents a potential risk factor, particularly in the vicinity of human settlements. Besides to the risk related to the explosive and effusive activity, the instability of volcanic edifices may develop into large landslides often catastrophically destructive, as shown by the collapse of the northern flank of Mount St. Helens in 1980. A combined approach was applied to analyse slope failures that occurred at Stromboli volcano. SdF slope stability was evaluated by using high-resolution multi-temporal DTMMs and performing limit equilibrium stability analyses. High-resolution topographical data collected with remote sensing techniques and three-dimensional slope stability analysis play a key role in understanding instability mechanism and the related risks. Analyses carried out on the 2002–2003 and 2007 Stromboli eruptions, starting from high-resolution data acquired through airborne remote sensing surveys, permitted the estimation of the lava volumes emplaced on the SdF slope and contributed to the investigation of the link between magma emission and slope instabilities. Limit Equilibrium analyses were performed on the 2001 and 2007 3D models, in order to simulate the slope behavior before 2002-2003 landslide event and after the 2007 eruption. Stability analyses were conducted to understand the mechanisms that controlled the slope deformations which occurred shortly after the 2007 eruption onset, involving the upper part of slope. Limit equilibrium analyses applied to both cases yielded results which are congruent with observations and monitoring data. The results presented in this work undoubtedly indicate that hazard assessment for the island of Stromboli should take into account the fact that a new magma intrusion could lead to further destabilisation of the slope, which may be more significant than the one recently observed because it will affect an already disarranged deposit and fractured and loosened crater area. The two-pronged approach based on the analysis of 3D multi-temporal mapping datasets and on the application of LE methods contributed to better understanding volcano flank behaviour and to be prepared to undertake actions aimed at risk mitigation.
Resumo:
This doctoral thesis focuses on ground-based measurements of stratospheric nitric acid (HNO3)concentrations obtained by means of the Ground-Based Millimeter-wave Spectrometer (GBMS). Pressure broadened HNO3 emission spectra are analyzed using a new inversion algorithm developed as part of this thesis work and the retrieved vertical profiles are extensively compared to satellite-based data. This comparison effort I carried out has a key role in establishing a long-term (1991-2010), global data record of stratospheric HNO3, with an expected impact on studies concerning ozone decline and recovery. The first part of this work is focused on the development of an ad hoc version of the Optimal Estimation Method (Rodgers, 2000) in order to retrieve HNO3 spectra observed by means of GBMS. I also performed a comparison between HNO3 vertical profiles retrieved with the OEM and those obtained with the old iterative Matrix Inversion method. Results show no significant differences in retrieved profiles and error estimates, with the OEM providing however additional information needed to better characterize the retrievals. A final section of this first part of the work is dedicated to a brief review on the application of the OEM to other trace gases observed by GBMS, namely O3 and N2O. The second part of this study deals with the validation of HNO3 profiles obtained with the new inversion method. The first step has been the validation of GBMS measurements of tropospheric opacity, which is a necessary tool in the calibration of any GBMS spectra. This was achieved by means of comparisons among correlative measurements of water vapor column content (or Precipitable Water Vapor, PWV) since, in the spectral region observed by GBMS, the tropospheric opacity is almost entirely due to water vapor absorption. In particular, I compared GBMS PWV measurements collected during the primary field campaign of the ECOWAR project (Bhawar et al., 2008) with simultaneous PWV observations obtained with Vaisala RS92k radiosondes, a Raman lidar, and an IR Fourier transform spectrometer. I found that GBMS PWV measurements are in good agreement with the other three data sets exhibiting a mean difference between observations of ~9%. After this initial validation, GBMS HNO3 retrievals have been compared to two sets of satellite data produced by the two NASA/JPL Microwave Limb Sounder (MLS) experiments (aboard the Upper Atmosphere Research Satellite (UARS) from 1991 to 1999, and on the Earth Observing System (EOS) Aura mission from 2004 to date). This part of my thesis is inserted in GOZCARDS (Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere), a multi-year project, aimed at developing a long-term data record of stratospheric constituents relevant to the issues of ozone decline and expected recovery. This data record will be based mainly on satellite-derived measurements but ground-based observations will be pivotal for assessing offsets between satellite data sets. Since the GBMS has been operated for more than 15 years, its nitric acid data record offers a unique opportunity for cross-calibrating HNO3 measurements from the two MLS experiments. I compare GBMS HNO3 measurements obtained from the Italian Alpine station of Testa Grigia (45.9° N, 7.7° E, elev. 3500 m), during the period February 2004 - March 2007, and from Thule Air Base, Greenland (76.5°N 68.8°W), during polar winter 2008/09, and Aura MLS observations. A similar intercomparison is made between UARS MLS HNO3 measurements with those carried out from the GBMS at South Pole, Antarctica (90°S), during the most part of 1993 and 1995. I assess systematic differences between GBMS and both UARS and Aura HNO3 data sets at seven potential temperature levels. Results show that, except for measurements carried out at Thule, ground based and satellite data sets are consistent within the errors, at all potential temperature levels.
Resumo:
ZUSAMMENFASSUNG Langzeitbeobachtungsstudien zur Landschaftsdynamik inSahelländern stehen generell einem defizitären Angebot anquantitativen Rauminformationen gegenüber. Der in Malivorgefundene lokal- bis regionalräumliche Datenmangelführte zu einer methodologischen Studie, die die Entwicklungvon Verfahren zur multi-temporalen Erfassung und Analyse vonLandschaftsveränderungsdaten beinhaltet. Für den RaumWestafrika existiert in großer Flächenüberdeckunghistorisches Fernerkundungsmaterial in Form hochauflösenderLuftbilder ab den 50er Jahren und erste erdbeobachtendeSatellitendaten von Landsat-MSS ab den 70er Jahren.Multitemporale Langzeitanalysen verlangen zur digitalenReproduzierbarkeit, zur Datenvergleich- undObjekterfaßbarkeit die a priori-Betrachtung derDatenbeschaffenheit und -qualität. Zwei, ohne verfügbare, noch rekonstruierbareBodenkontrolldaten entwickelte Methodenansätze zeigen nichtnur die Möglichkeiten, sondern auch die Grenzen eindeutigerradiometrischer und morphometrischerBildinformationsgewinnung. Innerhalb desÜberschwemmungsgunstraums des Nigerbinnendeltas im ZentrumMalis stellen sich zwei Teilstudien zur Extraktion vonquantitativen Sahelvegetationsdaten den radiometrischen undatmosphärischen Problemen:1. Präprozessierende Homogenisierung von multitemporalenMSS-Archivdaten mit Simulationen zur Wirksamkeitatmosphärischer und sensorbedingter Effekte2. Entwicklung einer Methode zur semi-automatischenErfassung und Quantifizierung der Dynamik derGehölzbedeckungsdichte auf panchromatischenArchiv-Luftbildern Die erste Teilstudie stellt historischeLandsat-MSS-Satellitenbilddaten für multi-temporale Analysender Landschaftsdynamik als unbrauchbar heraus. In derzweiten Teilstudie wird der eigens, mittelsmorphomathematischer Filteroperationen für die automatischeMusterkennung und Quantifizierung von Sahelgehölzobjektenentwickelte Methodenansatz präsentiert. Abschließend wird die Forderung nach kosten- undzeiteffizienten Methodenstandards hinsichtlich ihrerRepräsentativität für die Langzeitbeobachtung desRessourceninventars semi-arider Räume sowie deroperationellen Transferierbarkeit auf Datenmaterial modernerFernerkundungssensoren diskutiert.