834 resultados para Multi agent simulation
Resumo:
Communication and information diffusion are typically difficult in situations where centralised structures may become unavailable. In this context, decentralised communication based on epidemic broadcast becomes essential. It can be seen as an opportunity-based flooding for message broadcasting within a swarm of autonomous agents, where each entity tries to share the information it possesses with its neighbours. As an example of applications for such a system, we present simulation results where agents have to coordinate to map an unknown area.
Resumo:
This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.
Resumo:
In contrast to single robotic agent, multi-robot systems are highly dependent on reliable communication. Robots have to synchronize tasks or to share poses and sensor readings with other agents, especially for co-operative mapping task where local sensor readings are incorporated into a global map. The drawback of existing communication frameworks is that most are based on a central component which has to be constantly within reach. Additionally, they do not prevent data loss between robots if a failure occurs in the communication link. During a distributed mapping task, loss of data is critical because it will corrupt the global map. In this work, we propose a cloud-based publish/subscribe mechanism which enables reliable communication between agents during a cooperative mission using the Data Distribution Service (DDS) as a transport layer. The usability of our approach is verified by several experiments taking into account complete temporary communication loss.
Resumo:
This paper compares different state-of-the-art exploration strategies for teams of mobile robots exploring an unknown environment. The goal is to help in determining a best strategy for a given multi-robot scenario and optimization target. Experiments are done in a 2D-simulation environment with 5 robots that are equipped with a horizontal laser range finder. Required components like SLAM, path planning and obstacle avoidance of every robot are included in a full-system simulation. To evaluate different strategies the time to finish exploration, the number of measurements that have been integrated into the map and the development in size of the explored area over time are used. The results of extensive test runs on three environments with different characteristics show that simple strategies can perform fairly well in many situations but specialized strategies can improve performance with regards to their targeted evaluation measure.
Resumo:
There is an increasing demand for Unmanned Aerial Systems (UAS) to carry suspended loads as this can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. The constant variation in operating point induced by the slung load also causes conventional controllers to demand increased control effort. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present a novel controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions. The paper describes a System Dynamics and Control Simulation Toolbox for use with MATLAB/SIMULINK which includes a detailed simulation of the multi-rotor and slung load as well as a predictive controller to manage the nonlinear dynamics whilst accounting for system constraints. It is demonstrated that the controller simultaneously tracks specified waypoints and actively damps large slung load oscillations. A linear-quadratic regulator (LQR) is derived and control performance is compared. Results show the improved performance of the predictive controller for a larger flight envelope, including aggressive manoeuvres and large slung load displacements. The computational cost remains relatively small, amenable to practical implementations.
Resumo:
Particle swarm optimization (PSO), a new population based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area.Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time.This study proposes a method based on the particle swarm optimization (PSO) technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star.To validate the effectiveness and usefulness of algorithms,a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global convergence.
Resumo:
We address the problem of the rangefinder-based avoidance of unforeseen static obstacles during a visual navigation task. We extend previous strategies which are efficient in most cases but remain still hampered by some drawbacks (e.g., risks of collisions or of local minima in some particular cases, etc.). The key idea is to complete the control strategy by adding a controller providing the robot some anticipative skills to guarantee non collision and by defining more general transition conditions to deal with local minima. Simulation results show the proposed strategy efficiency.
Resumo:
The rupture of atherosclerotic plaques is known to be associated with the stresses that act on or within the arterial wall. The extreme wall tensile stress (WTS) is usually recognized as a primary trigger for the rupture of vulnerable plaque. The present study used the in-vivo high-resolution multi-spectral magnetic resonance imaging (MRI) for carotid arterial plaque morphology reconstruction. Image segmentation of different plaque components was based on the multi-spectral MRI and co-registered with different sequences for the patient. Stress analysis was performed on totally four subjects with different plaque burden by fluid-structure interaction (FSI) simulations. Wall shear stress distributions are highly related to the degree of stenosis, while the level of its magnitude is much lower than the WTS in the fibrous cap. WTS is higher in the luminal wall and lower at the outer wall, with the lowest stress at the lipid region. Local stress concentrations are well confined in the thinner fibrous cap region, and usually locating in the plaque shoulder; the introduction of relative stress variation during a cycle in the fibrous cap can be a potential indicator for plaque fatigue process in the thin fibrous cap. According to stress analysis of the four subjects, a risk assessment in terms of mechanical factors could be made, which may be helpful in clinical practice. However, more subjects with patient specific analysis are desirable for plaque-stability study.
Resumo:
A spatially explicit multi-competitor coexistence model was developed for meta-populations of prawns (shrimp) occupying habitat patches across the Great Barrier Reef, where dispersal was localised and dispersal rates varied between species. Prawns were modelled as individuals moving to and from patches or cells according to pre-set decision rules. The landscape was simulated as a matrix of cells with each cell having a spatially explicit survival index for each species. Mixed species prawn assemblages moved over this simplified spatially explicit landscape. A low level of chronic random environmental disturbance was assumed (cyclone and tropical storm damage) with additional acute spatially confined disturbance due to commercial trawling, modelled as an increase in mortality affecting inter-specific competition. The general form of the results was for increased disturbance to favour good-colonising "generalist" species at the expense of good-competitor "specialists". Increasing fishing mortality (local patch extinctions) combined with poor colonising ability resulted in low equilibrium abundance for even the best competitor, while in the same circumstances the poorest competitor but best coloniser could have the highest equilibrium abundance. This mimics the switch from high-value prawn species to lower-value prawn species as trawl effort increases, reflected in historic catch and effort logbook data and reported anecdotaly from the north Queensland trawl fleet. To match the observed distribution and behaviour of prawn assemblages, a combination inter-species competition, a spatially explicit landscape, and a defined pattern of disturbance (trawling) was required. Modelling this combination could simulate not only general trends in spatial distribution of each of prawn species but also localised concentrations observed in the survey data
Resumo:
Modeling of cultivar x trial effects for multienvironment trials (METs) within a mixed model framework is now common practice in many plant breeding programs. The factor analytic (FA) model is a parsimonious form used to approximate the fully unstructured form of the genetic variance-covariance matrix in the model for MET data. In this study, we demonstrate that the FA model is generally the model of best fit across a range of data sets taken from early generation trials in a breeding program. In addition, we demonstrate the superiority of the FA model in achieving the most common aim of METs, namely the selection of superior genotypes. Selection is achieved using best linear unbiased predictions (BLUPs) of cultivar effects at each environment, considered either individually or as a weighted average across environments. In practice, empirical BLUPs (E-BLUPs) of cultivar effects must be used instead of BLUPs since variance parameters in the model must be estimated rather than assumed known. While the optimal properties of minimum mean squared error of prediction (MSEP) and maximum correlation between true and predicted effects possessed by BLUPs do not hold for E-BLUPs, a simulation study shows that E-BLUPs perform well in terms of MSEP.
Resumo:
This paper presents the architecture of a fault-tolerant, special-purpose multi-microprocessor system for solving Partial Differential Equations (PDEs). The modular nature of the architecture allows the use of hundreds of Processing Elements (PEs) for high throughput. Its performance is evaluated by both analytical and simulation methods. The results indicate that the system can achieve high operation rates and is not sensitive to inter-processor communication delay.
Resumo:
Ramp metering (RM) is an access control for motorways, in which a traffic signal is placed at on-ramps to regulate the rate of vehicles entering the motorway and thus to preserve the motorway capacity. In general, RM algorithms fall into two categories by their effective scope: local control and coordinated control. Local control algorithm determines the metering rate based on the traffic condition on adjacent motorway mainline and the on-ramp. Conversely, coordinated RM strategies make use of measurements from the entire motorway network to operate individual ramp signals for optimal performance at the network level. This study proposes a multi-hierarchical strategy for on-ramp coordination. The strategy is structured in two layers. At the higher layer, a centralised, predictive controller plans the coordination control within a long update interval based on the location of high-risk breakdown flow. At the lower layer, reactive controllers determine the metering rates of those ramps involved in the ramp coordination with a short update interval. This strategy is modelled and applied to the northbound model of the Pacific Motorway in a micro-simulation platform (AIMSUN). The simulation results show that the proposed strategy effectively delays the onset of congestion and reduces total congestion with better managed on-ramp queues.
Resumo:
Parthenium weed (Parthenium hysterophorus L.) is an erect, branched, annual plant of the family Asteraceae. It is native to the tropical Americas, while now widely distributed throughout Africa, Asia, Oceania, and Australasia. Due to its allelopathic and toxic characteristics, parthenium weed has been considered to be a weed of global significance. These effects occur across agriculture (crops and pastures), within natural ecosystems, and has impacts upon health (human and animals). Although integrated weed management (IWM) for parthenium weed has had some success, due to its tolerance and good adaptability to temperature, precipitation, and CO2, this weed has been predicted to become more vigorous under a changing climate resulting in an altered canopy architecture. From the viewpoint of IWM, the altered canopy architecture may be associated with not only improved competitive ability and replacement but also may alter the effectiveness of biocontrol agents and other management strategies. This paper reports on a preliminary study on parthenium weed canopy architecture at three temperature regimes (day/night 22/15 °C, 27/20 °C, and 32/25 °C in thermal time 12/12 hours) and establishes a threedimensional (3D) canopy model using Lindenmayer-systems (L-systems). This experiment was conducted in a series of controlled environment rooms with parthenium weed plants being grown in a heavy clay soil. A sonic digitizer system was used to record the morphology, topology, and geometry of the plants for model construction. The main findings include the determination of the phyllochron which enables the prediction of parthenium weed growth under different temperature regimes and that increased temperature enhances growth and enlarges the plants canopy size and structure. The developed 3D canopy model provides a tool to simulate and predict the weed growth in response to temperature, and can be adjusted for studies of other climatic variables such as precipitation and CO2. Further studies are planned to investigate the effects of other climatic variables, and the predicted changes in the pathogenic biocontrol agent effectiveness.
Resumo:
In this paper, we propose an extension to the I/O device architecture, as recommended in the PCI-SIG IOV specification, for virtualizing network I/O devices. The aim is to enable fine-grained controls to a virtual machine on the I/O path of a shared device. The architecture allows native access of I/O devices to virtual machines and provides device level QoS hooks for controlling VM specific device usage. For evaluating the architecture we use layered queuing network (LQN) models. We implement the architecture and evaluate it using simulation techniques, on the LQN model, to demonstrate the benefits. With the architecture, the benefit for network I/O is 60% more than what can be expected on the existing architecture. Also, the proposed architecture improves scalability in terms of the number of virtual machines intending to share the I/O device.
Resumo:
In a marketplace where millions of dollars are spent on the design of mobile games (m-games), social marketers are now using this technology as a tool for behaviour change. Despite high expenditure by governments and non-profits on social marketing m-games, little is known about their effectiveness in terms of creating value. Value creation has been demonstrated to have an important impact on satisfaction and behaviour. This paper reports the results of a qualitative study involving four focus groups with 23 participants to reveal two categories of experiential value, entertainment and behaviour. Additionally, it was discovered that entertainment could be characterised by amusement and social value dimensions. Whereas, behaviour could be made up of information, simulation and distraction value dimensions. The categories of value, as well as the dimensions of information, simulation and distraction are entirely new to the social marketing literature and thus represents a unique contribution to social marketing.