991 resultados para Mu Us sand land
Resumo:
Discussing urban planning requires rethinking sustainability in cities and building healthy environments. Historically, some aspects of advancing the urban way of life have not been considered important in city planning. This is particularly the case where technological advances have led to conflicting land use, as with the installation of power poles and building electrical substations near residential areas. This research aims to discuss and rethink sustainability in cities, focusing on the environmental impact of low-frequency noise and electromagnetic radiation on human health. It presents data from a case study in an urban space in northern Portugal, and focuses on four guiding questions: Can power poles and power lines cause noise? Do power poles and power lines cause discomfort? Do power poles and power lines cause discomfort due to noise? Can power poles and power lines affect human health? To answer these questions, we undertook research between 2014 and 2015 that was comprised of two approaches. The first approach consisted of evaluating the noise of nine points divided into two groups â near the sourceâ (e.g., up to 50 m from power poles) and â away from the sourceâ (e.g., more than 250 m away from the source). In the second approach, noise levels were measured for 72 h in houses located up to 20 m from the source. The groups consist of residents living within the distance range specified for each group. The measurement values were compared with the proposed criteria for assessing low-frequency noise using the DEFRA Guidance (University of Salford). In the first approach, the noise caused discomfort, regardless of the group. In the second approach, the noise had fluctuating characteristics, which led us to conclude that the noise caused discomfort.
Resumo:
This study deals with the characterization of masonry mortars produced with different binders and sands. Several properties of the mortars were determined, like consistence, compressive and flexural strengths, shrinkage and fracture energy. By varying the type of binder (Portland cement, hydrated lime and hydraulic lime) and the type of sand (natural or artificial), it was possible to draw some conclusions about the influence of the composition on mortars properties. The results showed that the use of Portland cement makes the achievement of high strength classes easier. This was due to the slower hardening of lime compared with cement. The results of fracture energy tests showed much higher values for artificial sand mortars when compared with natural sand ones. This is due to the higher roughness of artificial sand particles which provided better adhesion between sand and binder.
Resumo:
In the Brazilian Amazon, large areas of abandoned lands may revert to secondary forest. In the process, pioneer tree species have an important role to restore productivity in old fields and improve environmental conditions. To determine potential photosynthesis (Apot), stomatal conductance (g), transpiration (E), and leaf micronutrient concentrations in Ochroma pyramidale (Cav. ex Lam.) Urban a study was carried out in the Brazilian Amazon (01o 51' S; 60o 04' W). Photosynthetic parameters were measured at increasing [CO2], saturating light intensity (1 mmol (photons) m-2 s-1), and ambient temperature. The rate of electron-transport (J), Apot,and water-use efficiency (WUE) increased consistently at increasing internal CO2 concentration (Ci). Conversely, increasing [CO2] decreased gs, E, and photorespiration (Pr). At the CO2-saturated region of the CO2 response curve (1.1 mmol (CO2) mol-1(air), J was 120 μmol (e-) m-2s-1 and Apot reached up to 24 μmol (CO2) m-2s-1. Likewise, at saturating C1 g and E were 30 and 1.4 mmol (H2O) m-2s-1, respectively, and P 2 r about 1.5 μmol (CO2) m-2s-1. Foliar nutrients were 185, 134, 50, and 10 μmol (element) m-2 (leaf area) for Fe, Mn, Zn, and Cu, respectively. It was concluded that [CO ] probably limits light saturated photosynthesis in this site. Furthermore, from a nutritional point of view, the low Fe to Cu ratio (15:1) may reflect nutritional imbalance in O. pyramidale at this site.
Resumo:
This paper draws upon a detailed longitudinal survey of households living on agricultural plots in the northern three provinces of the Ecuadorian Amazon, the principal region of colonization by migrants in Ecuador since the 1970s. Following the discovery of petroleum in 1967 near what has subsequently come to be the provincial capital and largest Amazonian city of Lago Agrio, oil companies built roads to lay pipelines to extract and pump oil across the Andes for export. As a result, for the past 30 years over half of both Ecuador's export earnings and government revenues have come from petroleum extracted from this region. But the roads also facilitated massive spontaneous in-migration of families from origin areas in the Ecuadorian Sierra, characterized by minifundia and rural poverty. This paper is about those migrants and their effects on the Amazonian landscape. We discuss the data collection methodology and summarize key results on settler characteristics and changes in population, land use, land ownership, technology, labor allocation, and living conditions, as well as the relationships between changes in population and changes in land use over time. The population in the study region has been growing rapidly due to both natural population growth (high fertility) and in-migration. This has led to a dramatic process of subdivision and fragmentation of plots in the 1990's, which contrasts with the consolidation of plots that has occurred in most of the mature frontier areas of the Brazilian Amazon. This fragmentation has led to important changes in land tenure and land use, deforestation, cattle raising, labor allocation, and settler welfare.
Resumo:
Conflicting opinions are recorded in the literature concerning the suitability of Amazon lands for sustainable agriculture following deforestation. This article has been written to shed light on this question by summarizing climate, landform, soil and vegetation features from the findings of a land resource study of the Brazilian state of Rondônia in south-west Amazonia. The work, which followed the World Soils and Terrain Digital Database (SOTER) methodology, was financed by the World Bank. During the course of the survey special emphasis was given to studying soils; 2914 profiles were analyzed and recorded. The study identified a complex pattern of land units with clear differences in climate, landform, soils and native vegetation. Forested areas mosaic with lesser areas of natural savannas. The latter occur on both poorly-drained and well-drained, albeit nutrient deficient sandy soils. The tallest and most vigorous forests or their remnants were seen growing on well-drained soils formed from nutrient-rich parent materials. Many of these soils could, or are being used for productive agriculture. Soils developed on nutrient-poor parent materials support forests that are significantly lower in height, and would require large lime and fertilizer inputs for agriculture. Low forests with high palm populations and minor areas of wet land savannas cover the poorly drained soils. It is evident that forest clearing in the past was indiscriminant; this cannot be condoned. The diversity of land conditions found throughout Rondônia would suggest that many past studies in the Amazon have simply been too broad to identify significant soil differences.
Resumo:
The high tree diversity and vast extent of Amazonian forests challenge our understanding of how tree species abundance and composition varies across this region. Information about these parameters, usually obtained from tree inventories plots, is essential for revealing patterns of tree diversity. Numerous tree inventories plots have been established in Amazonia, yet, tree species composition and diversity of white-sand and terra-firme forests of the upper Rio Negro still remain poorly understood. Here, we present data from eight new one-hectare tree inventories plots established in the upper Rio Negro; four of which were located in white-sand forests and four in terra-firme forests. Overall, we registered 4703 trees > 10 cm of diameter at breast height. These trees belong to 49 families, 215 genera, and 603 species. We found that tree communities of terra-firme and white-sand forests in the upper Rio Negro significantly differ from each other in their species composition. Tree communities of white-sand forests show a higher floristic similarity and lower diversity than those of terra-firme forests. We argue that mechanisms driving differences between tree communities of white-sand and terra-firme forests are related to habitat size, which ultimately influences large-scale and long-term evolutionary processes.
Resumo:
This paper aimed to evaluate the richness, abundance and frequency of sand fly occurrence in rural and urban areas American visceral Leishmaniasis -AVL is endemic in the study area of Santarém municipality, Pará state. Sand flies were collected during 1995-2000, using CDC light traps placed in neighborhoods and rural areas of the municipality. A total of 53.454 individuals and 26 species of sand flies were collected. The most abundant species in both urban and rural environments was Lutzomyia longipalpis, vector of AVL in the area. The highest species richness by capture was in rural area. In all years sampled, the largest number of species of sand fly collected was always in rural areas. The species of sand flies in urban and rural area were similar in 11 species. In the rural area other 11 species were found, a total of 22 species. Shannon-Wiener index ranged from 0.12 to 0.84 at rural areas and 0.08 to 0.34 at urban ones. In general, rural localities showed higher diversity (H') of phlebotomines than urban ones. Individual-based rarefaction curves for each area demonstrated that urban localities had the lowest expected number of phlebotomine species and the richest rural ones reach higher expected values with lower amount of individuals than urban sites. The most frequent species were Lutzomyia longipalpis, Evandromyia carmelinoi and Bichromomyia flaviscutellata.
Resumo:
Phlebotomine sand flies are insects of medical importance. Species in the Neotropical region are highly diverse. Some of these species are considered cryptic species because of their morphological similarity between adult females of different species make identification especially difficult. The aim of this study was to analyze and describe the armature in the genital atrium (AGA) of some adult female sand flies, in order to discover new taxonomic characters that make it possible to distinguish between species that would otherwise be treated as cryptic by analysis of the AGA. The AGA of 16 Phlebotomine sand fly species are described. Distinct differences were found in relation to the shape and size of the armature, the presence or absence of spines on the armature, and the shape, size, and grouping patterns of the spines. These characters made it possible to distinguish between the species studied.
Resumo:
White sand forests, although low in nutrients, are characterized not only by several endemic species of plants but also by several monodominant species. In general, plants in this forest have noticeably thin stems. The aim of this work was to elaborate a parallel dichotomous key for the identification of Angiosperm tree species occurring on white sand forests at the Allpahuayo Mishana National Reserve, Loreto, Peru. We compiled a list of species from several publications in order to have the most comprehensive list of species that occur on white sand forest. We found 219 species of Angiosperm, the more abundant species were Pachira brevipes (26.27%), Caraipa utilis (17.90%), Dicymbe uaiparuensis (13.27%), Dendropanax umbellatus (3.28%), Sloanea spathulata (2.52%), Ternstroemia klugiana (2.30%), Haploclathra cordata (2.28%), Parkia igneiflora (1.20%), Emmotum floribundum (1.06%), Ravenia biramosa (1.04%) among others. Most species of white sand forests can be distinguished using characteristics of stems, branches and leaves. This key is very useful for the development of floristic inventories and related projects on white sand forests from Allpahuayo Mishana National Reserve.
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
Pressures on the Brazilian Amazon forest have been accentuated by agricultural activities practiced by families encouraged to settle in this region in the 1970s by the colonization program of the government. The aims of this study were to analyze the temporal and spatial evolution of land cover and land use (LCLU) in the lower Tapajós region, in the state of Pará. We contrast 11 watersheds that are generally representative of the colonization dynamics in the region. For this purpose, Landsat satellite images from three different years, 1986, 2001, and 2009, were analyzed with Geographic Information Systems. Individual images were subject to an unsupervised classification using the Maximum Likelihood Classification algorithm available on GRASS. The classes retained for the representation of LCLU in this study were: (1) slightly altered old-growth forest, (2) succession forest, (3) crop land and pasture, and (4) bare soil. The analysis and observation of general trends in eleven watersheds shows that LCLU is changing very rapidly. The average deforestation of old-growth forest in all the watersheds was estimated at more than 30% for the period of 1986 to 2009. The local-scale analysis of watersheds reveals the complexity of LCLU, notably in relation to large changes in the temporal and spatial evolution of watersheds. Proximity to the sprawling city of Itaituba is related to the highest rate of deforestation in two watersheds. The opening of roads such as the Transamazonian highway is associated to the second highest rate of deforestation in three watersheds.
Resumo:
Architectural design is often associated with aesthetics and style, but it is also very important to building performance and sustainability. There are some studies associating architectural design to the choice for materials from sustainable sources, to indoor air quality, to energy efficiency and productivity. This article takes a step further to analyse how the use of efficient interior design techniques can impact the habitable space in order to improve building sustainability in land use. Smart interior design, a current trend related to the use of efficient and flexible furniture and movable walls in tiny or compact apartments, is analysed. A building with a standard design is used as a case study reference building and compared to a proposed theoretical design alternative using smart interior design techniques. In order to correctly assess sustainability performance, a quantifiable and verified method is used. Results showed that the use of smart interior design techniques can greatly reduce buildingsâ impact on the environment.
Resumo:
The management of urban environment, together with the preservation of the natural environment and the creation of a sustainable built environment, is a complex challenge for contemporary societies. In the name of progress, cities are contributing for the degradation of all surrounding ecosystems. Therefore there is an arising demand for developing new strategies and a new urban development paradigm settled in the search for the equilibrium between natural and built environments and efficient use of resources. The objective of this paper is to analyse how the urban expansion of the city of Estarreja took place in relation to the land use, based on the land capability classification maps of the area. Based in the results some sustainable development strategies that might be applied to the city are discussed. The obtained results demonstrate that the city has been growing faster then its population, consuming vast portions of land, since its growth as been occurring in a linear form. Despite this fact, results show that most of this expansion took place towards a territory of lower agricultural potential, when comparing to the location of its original settlement.
Resumo:
Nowadays cities are facing several environmental problems due to the population migration to urban areas, which is causing urban sprawl. This way, it is very important to define solutions to improve Land Use Efficiency (LUE). This article proposes the use of community buildings features as a solution to increase land use efficiency. Community buildings consider the design of shared building spaces to reduce the floor area of buildings. This work tests the performance of some case-study buildings regarding LUE to analyse its possible pros and cons. A quantifiable method is used to assess buildingsâ LUE, which considers the number of occupants, the gross floor area, the functional area, the implantation area and the allotment area. Buildings with higher values for this index have reduced environmental impacts because they use less construction materials, produce less construction and demolition wastes and require less energy for building operation. The results showed that the use of community building features can increase Land Use Efficiency of buildings.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil