936 resultados para Moringa oleifera seeds
Resumo:
The recent emergence of heritable high level resistance to phosphine in stored grain pests is a serious concern among major grain growing countries around the world. Here we describe the genetics of phosphine resistance in the rust red flour beetle Tribolium castaneum (Herbst), a pest of stored grain as well as a genetic model organism. We investigated three field collected strains of T. castaneum viz., susceptible (QTC4), weakly resistant (QTC1012) and strongly resistant (QTC931) to phosphine. The dose-mortality responses of their test- and inter-cross progeny revealed that most resistance was conferred by a single major resistance gene in the weakly (3.2x) resistant strain. This gene was also found in the strongly resistant (431x) strain, together with a second major resistance gene and additional minor factors. The second major gene by itself confers only 12-206x resistance, suggesting that a strong synergistic epistatic interaction between the genes is responsible for the high level of resistance (431x) observed in the strongly resistant strain. Phosphine resistance is not sex linked and is inherited as an incompletely recessive, autosomal trait. The analysis of the phenotypic fitness response of a population derived from a single pair inter-strain cross between the susceptible and strongly resistant strains indicated the changes in the level of response in the strong resistance phenotype; however this effect was not consistent and apparently masked by the genetic background of the weakly resistant strain. The results from this work will inform phosphine resistance management strategies and provide a basis for the identification of the resistance genes.
Resumo:
Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.) are common cosmopolitan pests of stored grain and grain products. We evaluated the relative attraction of T.castaneum and R.dominica to wheat, sorghum and cotton seeds in the field, near grain storage facilities and well away from storages in southern and central Queensland using multiple trapping techniques. The results show that T.castaneum is more strongly attracted to linted cotton seed relative to wheat, whereas R.dominica did not respond to cotton seed at all and was attracted only to wheat. Significantly more adults of T.castaneum (10-15 times) were attracted to traps placed on the ground, near grain storage, than to equivalent traps that were suspended (1.5m above the ground) nearby. These results suggest that Tribolium beetles detect and respond to resources towards the end of their dispersal flight, after which they localize resources while walking. By contrast R.dominica was captured only in suspended traps, which suggests they fly directly onto resources as they localize them. The ability of both species to colonize and reproduce in isolated resource patches within the relatively short time of 1month is illustrated by the returns from the traps deployed in the field (at least 1km from the nearest stored grain) even though they caught only a few beetles. The results presented here provide novel insights about the resource location behaviours of both T.castaneum and R.dominica. In particular, the relationship of T.castaneum with non-cereal resources that are not conventionally associated with this species suggests an emphasis on these other resources in investigating the resource location behaviour of these beetles. This new perspective on the ecology of T. castaneum highlights the potential role of non-cereal resources (such as the lint on cotton seed) in the spread of grain pest infestations.
Resumo:
Circulating tumor cells (CTCs) are the seeds for cancer metastases development, which is responsible for >90% of cancer-related deaths. Accurate quantification of CTCs in human fluids could be an invaluable tool for understanding cancer prognosis, delivering personalized medicine to prevent metastasis and finding cancer therapy effectiveness. Although CTCs were first discovered more than 200 years ago, until now it has been a nightmare for clinical practitioners to capture and diagnose CTCs in clinical settings. Our society needs rapid, sensitive, and reliable assays to identify the CTCs from blood in order to help save millions of lives. Due to the phenotypic EMT transition, CTCs are undetected for more than one-third of metastatic breast cancer patients in clinics. To tackle the above challenges, the first volume in “Circulating Tumor Cells (CTCs): Detection Methods, Health Impact and Emerging Clinical Challenges discusses recent developments of different technologies, which have the capability to target and elucidate the phenotype heterogenity of CTCS. It contains seven chapters written by world leaders in this area, covering basic science to possible device design which can have beneficial applications in society. This book is unique in its design and content, providing an in-depth analysis to elucidate biological mechanisms of cancer disease progression, CTC detection challenges, possible health effects and the latest research on evolving technologies which have the capability to tackle the above challenges. It describes the broad range of coverage on understanding CTCs biology from early predictors of the metastatic spread of cancer, new promising technology for CTC separation and detection in clinical environment and monitoring therapy efficacy via finding the heterogeneous nature of CTCs. (Imprint: Nova Biomedical)
Resumo:
Take home messages: Plant only high quality seed that has been germ and vigour tested and treated with a registered seed dressing Avoid poorly drained paddocks and those with a history of lucerne, medics or chickpea Phytophthora root rot, PRR; do not grow Boundary if you even suspect a PRR risk Select best variety suited to soil type, farming system and disease risk Beware Ascochyta: follow recommendations for your variety and district Minimise risk of virus by retaining stubble, planting on time and at optimal rate, controlling weeds and ensuring adequate plant nutrition Test soil to determine risk of salinity and sodicity – do not plant chickpeas if ECe > 1.0-1.3 dS/m. Beware early desiccation of seed crops – know how to tell when 90-95% seeds are mature
Resumo:
Papaya has been used medicinally to treat an extremely broad range of ailments including intestinal worms, dengue fever, diabetes, hypertension, wound repair, and as an abortion agent. Although papaya is most commonly consumed as a ripe fruit, the plant tissues used as curatives are mainly derived from the seeds, young leaves, latex, or green immature fruit. The agents responsible for action have not been conclusively identified for all uses, but there is increasing evidence that activity may be attributable to benzyl isothiocyanate (BITC) in the case of anthelmintic and abortifacient action, and to the protease papain, and possibly chymopapain, in relation to wound repair. The location of these compounds in papaya tissues is likely to explain why different tissues are used for different ailments. Seeds, young leaves, and latex are good sources of BITC and are consequently used as a curative for intestinal worms. Immature green fruit is a good source of protease and is used as a topical application for burn wounds to accelerate tissue repair. The type of papaya tissue used may therefore provide a clue as to the active agent in ailments where papaya extracts have exhibited some activity (diabetes, hypertension, dengue fever). However, the compound(s) responsible for action remains to be identified. Modes of action of papaya extracts vary, but may include lowering blood glucose levels (diabetes), vascular muscle relaxation (hypertension), increasing blood cell count (dengue fever), stimulation of cell proliferation (wound healing), spasmodic contraction of uterine muscles (abortion), and induction of phase 2 enzymes (cancer chemoprevention). Although there has been increased study over the last decade into the physiological mode of action of papaya extracts, further increase in the knowledge of the compounds responsible for curative action will help to transfer the use of papaya from folklore remedies to mainstream medicinal use.
Resumo:
The ubiquitous fungal pathogen Macrophomina phaseolina is best known as causing charcoal rot and premature death when host plants are subject to post-flowering stress. Overseas reports of M.phaseolina causing a rapid rot during the sprouting of Australian mungbean seed resulted in an investigation of the possible modes of infection of seed. Isolations from serial portions of 10 mungbean plants naturally infected with the pathogen revealed that on most plants there were discrete portions of infected tissue separated by apparently healthy tissue. The results from these studies, together with molecular analysis of isolates collected from infected tissue on two of the plants, suggested that aerial infection of aboveground parts by different isolates is common. Inoculations of roots and aboveground parts of mungbean plants at nine temperaturexsoil moisture incubation combinations and of detached green pods strongly supported the concept that seed infection results from infection of pods by microsclerotia, rather than from hyphae growing systemically through the plant after root or stem infection. This proposal is reinforced by anecdotal evidence that high levels of seed infection are common when rainfall occurs during pod fill, and by the isolation of M.phaseolina from soil peds collected on pods of mungbean plants in the field. However, other experiments showed that when inoculum was placed within 130mm of a green developing pod and a herbicide containing paraquat and diquat was sprayed on the inoculated plants, M.phaseolina was capable of some systemic growth from vegetative tissue into the pods and seeds.
Resumo:
A significantly increased water regime can lead to inundation of rivers, creeks and surrounding floodplains- and thus impact on the temporal dynamics of both the extant vegetation and the dormant, but viable soil-seed bank of riparian corridors. The study documented changes in the soil seed-bank along riparian corridors before and after a major flood event in January 2011 in southeast Queensland, Australia. The study site was a major river (the Mooleyember creek) near Roma, Central Queensland impacted by the extreme flood event and where baseline ecological data on riparian seed-bank populations have previously been collected in 2007, 2008 and 2009. After the major flood event, we collected further soil samples from the same locations in spring/summer (November–December 2011) and in early autumn (March 2012). Thereafter, the soils were exposed to adequate warmth and moisture under glasshouse conditions, and emerged seedlings identified taxonomically. Flooding increased seed-bank abundance but decreased its species richness and diversity. However, flood impact was less than that of yearly effect but greater than that of seasonal variation. Seeds of trees and shrubs were few in the soil, and were negatively affected by the flood; those of herbaceous and graminoids were numerous and proliferate after the flood. Seed-banks of weedy and/or exotic species were no more affected by the flood than those of native and/or non-invasive species. Overall, the studied riparian zone showed evidence of a quick recovery of its seed-bank over time, and can be considered to be resilient to an extreme flood event.
Resumo:
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm 615 cm, 25 cm 617 cm, 25 cm 619 cm, 25 cm 621 cm, and 25 cm 623 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm615 cm to 25 cm623 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm617 cm to 25 cm623 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm 617 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm617 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice
Resumo:
Cascabela thevetia (L.) Lippold (Apocynaceae) is an invasive woody weed that has formed large infestations at several locations in northern Australia. Understanding the reproductive biology of C. thevetia is vital to its management. This paper reports results of a shade house experiment that determined the effects of light conditions (100% or 30% of natural light) and plant densities (one, two, four or eight plants per plot) on the growth, time to flowering and seed formation, and monthly pod production of two C. thevetia biotypes (peach and yellow). Shaded plants were significantly larger when they reached reproductive maturity than plants grown under natural light. However, plants grown under natural light flowered earlier (268 days compared with 369 days) and produced 488 more pods per pot (a 5-fold increase) over 3 years. The yellow biotype was slightly taller at reproductive maturity but significantly taller and with significantly greater aboveground biomass at the end of the study. Both biotypes flowered at a similar time under natural light and low plant densities but the yellow biotype was quicker to seed (478 versus 498 days), produced significantly more pods (364 versus 203 pods) and more shoot growth (577 g versus 550 g) than the peach biotype over 3 years. Higher densities of C. thevetia tended to significantly reduce the shoot and root growth by 981 g and 714 g per plant across all light conditions and biotypes over 3 years and increase the time taken to flower by 140 days and produce seeds by 184 days. For land managers trying to prevent establishment of C. thevetia or to control seedling regrowth once initial infestations have been treated, this study indicates that young plants have the potential to flower and produce seeds within 268 and 353 days, respectively. However, with plant growth and reproduction most likely to be slower under field conditions, annual surveillance and control activities should be sufficient to find and treat plants before they produce seeds and replenish soil seed banks. The most at-risk part of the landscape may be open areas that receive maximum sunlight, particularly within riparian habitats where plants would consistently have more favourable soil moisture conditions.
Resumo:
Cultures originally identified as Drechslera australiensis, from seeds of Chloris gayana in Japan, were the basis for Tsuda and Ueyama's new combination, Bipolaris australiensis, and its associated sexual morph Pseudocochliobolus australiensis. By studying ex-type materials of both Drechslera australiensis, which was originally isolated from seeds of Oryza sativa in Australia, and Pseudocochliobolus australiensis, we show by morphological and molecular phylogenetic analysis that these two specimens represent different species. Taxonomic confusion is resolved by the transfer of Pseudocochliobolus australiensis to Curvularia tsudae comb. nov. et nom. nov., together with a revised synonymy for Curvularia australiensis. © 2014 The Mycological Society of Japan.
Resumo:
Parthenium (Parthenium hysterophorus L.) is one of the most aggressive herbaceous weeds of the Asteraceae family. It is widely distributed, almost across the world and has become the most important invasive weed. Comprehensive information on interference and control of this devastating species is required to facilitate better management decisions. A broad review on the interference and management of this weed is presented here. Inspite of its non-tropical origin, parthenium grows quite successfully under a wide range of environmental conditions. It is spreading rapidly in Australia, Western Africa, Asia, and Caribbean countries, and has become a serious weed of pastures, wastelands, roadsides, railwaysides, water courses, and agricultural crops. The infestations of parthenium have been reported to reduce grain and forage yields by 40–90%. The spread of parthenium has been attributed to its allelopathic activity, strong competitiveness for soil moisture and nutrients, and its capability to exploit natural biodiversity. Allelochemicals released from parthenium has been reported to decrease germination and growth of agronomic crops, vegetables, trees, and many other weed species. Growth promoting effects of parthenium extracts at low concentrations have also been reported in certain crops. Many pre- and post-emergence herbicides have been evaluated for the control of parthenium in cropped and non-cropped areas. The most effective herbicides are clomazone, metribuzin, atrazine, glyphosate, metsulfuron methyl, butachlor, bentazone, dicamba, and metsulfuron methyl. Extracts, residues, and essential oils of many allelopathic herbs (Cassia, Amaranthus, and Xanthium species), grasses (Imperata and Desmostachya species), and trees (Eucalyptus, Azadirachta, Mangifera species, etc.) have demonstrated inhibitory activities on seed germination and seedling growth of parthenium. Metabolites of several fungi, e.g., Fusarium oxysporun and Fusarium monilifonne, exhibit bioherbicidal activity against seeds and seedlings of this weed. Intercropping, displacement by competitive plant species like Cassia species, bisset bluegrass, florgen blugress, buffelgrass, along with the use of biological control agents like Mexican beetle, seed-feeding and stem-boring weevils, stem-galling and leaf-mining moth, and sap-feeding plant hopper, have been reported as possible strategies for the management of parthenium. An appropriate integration of these approaches could help minimize spread of parthenium and provide sustainable weed management with reduced environmental concerns.
Resumo:
Cultures originally identified as Drechslera australiensis, from seeds of Chloris gayana in Japan, were the basis for Tsuda and Ueyama's new combination, Bipolaris australiensis, and its associated sexual morph Pseudocochliobolus australiensis. By studying ex-type materials of both Drechslera australiensis, which was originally isolated from seeds of Oryza sativa in Australia, and Pseudocochliobolus australiensis, we show by morphological and molecular phylogenetic analysis that these two specimens represent different species. Taxonomic confusion is resolved by the transfer of Pseudocochliobolus australiensis to Curvularia tsudae comb. nov. et nom. nov., together with a revised synonymy for Curvularia australiensis.
Resumo:
Context Most studies assess pollination success at capsule maturity, and studies of pre-zygotic processes are often lacking. Aims This study investigates the suitability of controlled pollination for a potential forestry plantation species, Eucalyptus argophloia, by examining pre- and post-zygotic pollination success. Methods Pollen tube development, capsule set and seed set are compared following three-stop pollination, artificially induced protogyny (AIP), AIP unpollinated and open pollination. The fecundity of stored pollen was compared with that of fresh pollen. Results Three-stop pollination, AIP and open pollination had similar numbers of pollen tubes, but AIP unpollinated had none. Open pollination produced significantly more capsules and total number of seeds than the other treatments. There were significantly more seeds per retained capsule for the open pollination and three-stop pollination treatments than for the AIP and AIP unpollinated pollination treatments. There were no significant differences relative to the age of pollen. Conclusions Pre-zygotic success in terms of pollen tubes was similar for open-pollinated, three stop and AIP, but was not reflected in post-zygotic success when the open pollination and three-stop method produced significantly more seeds per retained capsule than the AIP treatments and open pollination yielded more seeds. Capsule set and total seed set for open pollination, and fewer capsules in controlled pollinations, may reflect physical damage to buds because of the small E. argophloia flowers. Suitable alternative breeding strategies other than controlled pollinations are discussed for this species.
Resumo:
Efficient ways to re-establish pastures are needed on land that requires a rotation between pastures and crops. We conducted trials in southern inland Queensland with a range of tropical perennial grasses sown into wheat stubble that was modified in various ways. Differing seedbed preparations involved cultivation or herbicide sprays, with or without fertilizer at sowing. Seed was broadcast and sowing time ranged from spring through to autumn on 3 different soil types. Seed quality and post-sowing rainfall were major determinants of the density of sown grass plants in the first year. Light cultivation sometimes enhanced establishment compared with herbicide spraying of standing stubble, most often on harder-setting soils. A nitrogen + phosphorus mixed fertilizer rarely produced any improvement in sown grass establishment and sometimes increased weed competition. The effects were similar for all types of grass seed from hairy fascicles to large, smooth panicoid seeds and minute Eragrostis seeds. There was a strong inverse relationship between the initial density of sown grass established and the level of weed competition.