870 resultados para Molecular Self-Assembly


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using simplified model derivatives, the assembly of the macrocyclic rings of madangamines, including the 13- and 14-membered D rings of madangamines C-E, the all-cis-triunsaturated 15-membered D ring of madangamine A, and the (Z,Z)-unsaturated 11-membered E ring common to madangamines A-E, has been studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several molecular therapies require the implantation of cells that secrete biotherapeutic molecules and imaging the location and microenvironment of the cellular implant to ascertain its function. We demonstrate noninvasive in vivo magnetic resonance imaging (MRI) of self-assembled microcontainers that are capable of cell encapsulation. Negative contrast was obtained to discern the microcontainer with MRI; positive contrast was obtained in the complete absence of background signal. MRI on a clinical scanner highlights the translational nature of this research. The microcontainers were loaded with cells that were dispersed in an extracellular matrix, and implanted both subcutaneously and in human tumor xenografts in SCID mice. MRI was performed on the implants, and microcontainers retrieved postimplantation showed cell viability both within and proximal to the implant. The microcontainers are characterized by their small size, three dimensionality, controlled porosity, ease of parallel fabrication, chemical and mechanical stability, and noninvasive traceability in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé large public Le glucose est une source d'énergie essentielle pour notre organisme, indispensable pour le bon fonctionnement des cellules de notre corps. Les cellules β du pancréas sont chargées de réguler l'utilisation du glucose et de maintenir la glycémie (taux de glucose dans le sang) à un niveau constant. Lorsque la glycémie augmente, ces dernières sécrètent l'insuline, une hormone favorisant l'absorption, l'utilisation et le stockage du glucose. Une sécrétion insuffisante d'insuline provoque une élévation anormale du taux de glucose dans le sang (hyperglycémie) et peut mener au développement du diabète sucré. L'insuline est sécrétée dans le sang par un mécanisme particulier appelé exocytose. Une meilleure compréhension de ce mécanisme est nécessaire dans l'espoir de trouver des nouvelles thérapies pour traiter les 170 millions de personnes atteintes de diabète sucré à travers le monde. L'implication de diverses protéines, comme les SNAREs ou Rabs a déjà été démontrée. Cependant leurs mécanismes d'action restent, à ce jour, peu compris. De plus, l'adaptation de la machinerie d'exocytose à des conditions physiopathologiques, comme l'hyperglycémie, est encore à élucider. Le but de mon travail de thèse a été de clarifier le rôle de deux protéines, Noc2 et Tomosyn, dans l'exocytose ; puis de déterminer les effets d'une exposition prolongée à un taux élevé de glucose sur l'ensemble des protéines de la machinerie d'exocytose. Noc2 est un partenaire potentiel de deux Rabs connues pour leur implication dans les dernières étapes de l'exocytose, Rab3 et Rab27. Grâce à l'étude de différents mutants de Noc2, j'ai montré que l'interaction avec Rab27 permet à la protéine de s'associer avec les organelles de la cellule β contenant l'insuline. De plus, en diminuant sélectivement l'expression de Noc2, j'ai déterminé l'importance de cette protéine pour le bon fonctionnement du processus d'exocytose et le relâchement de l'insuline. Quant à Tomosyn, une protéine interagissant avec les protéines SNAREs, j'ai démontré son importance dans la sécrétion d'insuline en diminuant de manière sélective son expression dans les cellules β. Ensuite, grâce à une combinaison d'approches moléculaires et de microscopie, j'ai mis en évidence le rôle de Tomosyn dans les dernières étapes de l'exocytose. Enfin, puisque la sécrétion d'insuline est diminuée lors d'une hyperglycémie prolongée, j'ai analysé l'adaptation de la machinerie d'exocytose à ces conditions. Ceci m'a permis de découvrir que l'expression de quatre protéines essentielles pour le processus d'exocytose, Noc2, Rab3, Rab27 et Granuphilin, est fortement diminuée lors d'une hyperglycémie chronique. L'ensemble de ces données met en évidence l'importance de Noc2 et Tomosyn dans la sécrétion d'insuline. L'inhibition, par un taux élevé de glucose, de l'expression de Noc2 et d'autres protéines indispensables pour l'exocytose suggère que ce phénomène pourrait contribuer au développement du diabète sucré. Résumé L'exocytose d'insuline, en réponse au glucose circulant dans le sang, est la fonction principale de la cellule β. Celle-ci permet de stabiliser le taux de glucose sanguin (glycémie). Le diabète de type 2 est caractérisé par une glycémie élevée due, principalement, à un défaut de sécrétion d'insuline en réponse au glucose. La compréhension des mécanismes qui contrôlent l'exocytose d'insuline est essentielle pour clarifier les causes du diabète sucré. Plusieurs composants impliqués dans ce processus ont été identifiés. Ceux-ci incluent les SNAREs Syntaxin-1, VAMP2 et SNAP25 et les GTPases Rab3 et Rab27 qui jouent un rôle dans les dernières étapes de l'exocytose. Pendant mon travail de thèse, j'ai étudié le rôle de Noc2, un des partenaires de Rab3 et Rab27, dans l'exocytose d'insuline. Nous avons déterminé que Noc2 s'associe aux granules de sécrétion d'insuline grâce à son interaction avec Rab27. La diminution de l'expression de Noc2 dans la lignée cellulaire β INS-1E, par ARN interférence, influence négativement la sécrétion d'insuline stimulée par différents sécrétagogues et prouve que cette protéine Noc2 est essentielle pour l'exocytose d'insuline. L'interaction avec Munc13, une protéine impliquée dans l'arrimage des vésicules, suggère que Noc2 participe au recrutement des granules d'insuline à la membrane plasmique. Ensuite, j'ai analysé l'adaptation de la machinerie d'exocytose à des concentrations supraphysiologiques de glucose. Le niveau d'expression de Rab3 et Rab27 et de leurs effecteurs Granuphilin/S1p4 et Noc2 est fortement diminué par une exposition prolongée des cellules β à haut glucose. L'effet observé est en relation avec l'induction de l'expression de ICER, un facteur de transcription surexprimé dans des conditions d'hyperglycémie et également dans des modèles génétiques de diabète de type 2. La surexpression de ICER dans des cellules INS-1E diminue l'expression de Rab3, Rab27, Granuphilin/Slp4 et Noc2 et par conséquent l'exocytose d'insuline. Ainsi, l'induction de ICER, après une exposition prolongée à haut glucose, régule négativement l'expression de protéines essentielles pour l'exocytose et altère la sécrétion d'insuline. Ce mécanisme pourrait contribuer au dysfonctionnement de l'exocytose d'insuline dans le diabète de type 2. Dans la dernière partie de ma thèse, j'ai investigué le rôle de la protéine Tomosyn-1 dans la formation du complexe SNARE. Cette protéine a une forte affinité pour Syntaxin-1 et contient un domaine SNARE. Tomosyn-1 est concentrée dans les régions cellulaires enrichies en granules de sécrétion. La diminution sélective de l'expression de Tomosyn-1 induit une réduction de l'exocytose stimulée par différents sécrétagogues. Cet effet est dû à un défaut de fusion des granules avec la membrane plasmique. Ceci nous indique que Tomosyn-1 intervient dans une phase importante de la préparation des vésicules à la fusion, qui est nécessaire à l'exocytose. Abstract: Insulin exocytosis from pancreatic β-cells plays a central role in blood glucose homeostasis. Diabetes mellitus is a complex metabolic disorder characterized by secretory dysfunctions in pancreatic β-cells and release of amounts of insulin that are inappropriate to maintain blood glucose concentration within normal physiological ranges. To define the causes of β-cell failure a basic understanding of the molecular mechanisms that control insulin exocytosis is essential. Some of the molecular components involved in this process have been identified, including the SNARE proteins VAMP2, Syntaxin-1 and SNAP25 and the two GTPases, Rab3 and Rab27, that regulate the final steps of insulin secretion. I first investigated the role of Noc2, a potential Rab3 and Rab27 partner, in insulin secretion. I found that Noc2 associates with Rab27 and is recruited by this GTPase on insulin- containing granules. Silencing of the Noc2 gene by RNA interference led to a strong impairment in the capacity of the β-cell line INS-1E to respond to secretagogues, indicating that appropriate levels of the protein are essential for insulin exocytosis. I also showed that Noc2 interacts with Munc13, a protein that controls vesicle priming, suggesting a possible involvement of Noc2 in the recruitment of secretory granules at the plasma membrane. In the second part of my thesis, I investigated the adaptation of the molecular machinery of exocytosis to physiopathological conditions. I found that the expression of Rab3, Rab27 and of their effectors Granuphilin/Slp4 and Noc2 is dramatically decreased by chronic exposure of β-ce1ls to supraphysiological glucose levels. The observed glucotoxic effect is a consequence of the induction of ICER, a transcriptional repressor that is increased by prolonged hyperglycemia and in genetic models of type 2 diabetes. Overexpression of ICER reduced Granuphilin, Noc2, Rab3 and Rab27 levels and inhibited exocytosis. These results suggest that the presence of inappropriate levels of ICER diminishes the expression of a group of proteins essential for exocytosis and contributes to defective insulin release in type 2 diabetes. In the last part of my thesis, I focused my attention on the role of Tomosyn-1, a Syntaxin-1 binding protein possessing a SNARE-like motif, in the control of SNARE complex assembly. I found that Tomosyn-1 is concentrated in cellular compartments enriched in insulin-containing secretory granules. Silencing of Tomosyn-1 did not affect the number of secretory granules docked at the plasma membrane but decreased their release probability, resulting in a reduction in stimulus-induced insulin exocytosis. These findings suggest that Tomosyn-1 is involved in a post-docking event that prepares secretory granules for fusion and is necessary to sustain exocytosis in response to insulin secretagogues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to assess the potential of interspecific hybridization of Vitis labruscana and Muscadinia rotundifolia by using artificial cross-pollinations. Microsatellite markers were used to confirm interspecific hybridizations and the identity of the parental genotypes. In crosses in which M. rotundifolia was used as the female parent, no true hybrids were obtained. In the reciprocal crosses, 114 seedlings were identified as true V. labruscana x M. rotundifolia hybrids. Self pollination occurred in direct and in reciprocal crosses. The crossings between 'Bordo' x 'Carlos', 'Magnolia', 'Regale' and' Roanoke', and between' Isabel' x 'Bountiful', 'Carlos', 'Magnolia', 'Regale' and 'Roanoke' were confirmed. The 15 markers evaluated showed that two M. rotundifolia parental genotypes had the same fingerprint profile, indicating a like lyplanting error. The success of hybridization depends mainly on the species and on the cultivar used as the female parent. Microsatellite markers are efficient to confirm the paternity of interspecific F1 hybrids and to determine the correct identity of M. rotundifolia cultivars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules. Based on these findings, we compared the CD8 T cell response to human and murine Melan-A peptide by immunizing HLA-A2 transgenic mice. Even though the magnitude of the CTL response elicited by the murine Melan-A peptide was lower than the one elicited by the human Melan-A peptide, both populations of CTL recognized the corresponding immunizing peptide with the same functional avidity. Interestingly, CTL specific for the murine Melan-A peptide were completely cross-reactive against the orthologous human peptide, whereas anti-human Melan-A CTL recognized the murine Melan-A peptide with lower avidity. Structurally, this discrepancy could be explained by the fact that Ile32 of murine Melan-A24-33 created a larger TCR contact area than Thr34 of human Melan-A26-35. These data indicate that, even if immunizations with orthologous peptides can induce strong specific T cell responses, the quality of this response against syngeneic targets might be suboptimal due to the structure of the peptide-TCR contact surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural Killer (NK) cells use germ line encoded receptors to detect diseased host cells. Despite the invariant recognition structures, NK cells have a significant ability to adapt to their surroundings, such as the presence or absence of MHC class I molecules. It has been assumed that this adaptation occurs during NK cell development, but recent findings show that mature NK cells can also adapt to the presence or absence of MHC class I molecules. Here, we summarize how NK cells adjust to changes in the expression of MHC class I molecules. We propose an extension of existing models, in which MHC class I recognition during NK cell development sequentially instructs and maintains NK cell function. The elucidation of the molecular basis of the two effects may identify ways to improve the fitness of NK cells and to prevent the loss of NK cell function due to persistent alterations in their environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the challenges of treating polarization and covalent interactions in docking by developing a hybrid quantum mechanical/molecular mechanical (QM/MM) scoring function based on the semiempirical self-consistent charge density functional tight-binding (SCC-DFTB) method and the CHARMM force field. To benchmark this scoring function within the EADock DSS docking algorithm, we created a publicly available dataset of high-quality X-ray structures of zinc metalloproteins ( http://www.molecular-modelling.ch/resources.php ). For zinc-bound ligands (226 complexes), the QM/MM scoring yielded a substantially improved success rate compared to the classical scoring function (77.0% vs 61.5%), while, for allosteric ligands (55 complexes), the success rate remained constant (49.1%). The QM/MM scoring significantly improved the detection of correct zinc-binding geometries and improved the docking success rate by more than 20% for several important drug targets. The performance of both the classical and the QM/MM scoring functions compare favorably to the performance of AutoDock4, AutoDock4Zn, and AutoDock Vina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Annonaceae family is distributed throughout Neotropical regions of the world. In Brazil, it covers nearly all natural formations particularly Annona, Xylopia and Polyalthia and is characterized chemically by the production of sources of terpenoids (mainly diterpenes), alkaloids, steroids, polyphenols and, flavonoids. Studies from 13C NMR data of diterpenes related with their botanical occurrence were used to generate self-organizing maps (SOM). Results corroborate those in the literature obtained from morphological and molecular data for three genera and the model can be used to project other diterpenes. Therefore, the model produced can predict which genera are likely to contain a compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell division (mitosis) is a fundamental process in the life cycle of a cell. Equal distribution of chromosomes between the daughter cells is essential for the viability and well-being of an organism: loss of fidelity of cell division is a contributing factor in human cancer and also gives rise to miscarriages and genetic birth defects. For maintaining the proper chromosome number, a cell must carefully monitor cell division in order to detect and correct mistakes before they are translated into chromosomal imbalance. For this purpose an evolutionarily conserved mechanism termed the spindle assembly checkpoint (SAC) has evolved. The SAC comprises a complex network of proteins that relay and amplify mitosis-regulating signals created by assemblages called kinetochores (KTs). Importantly, minor defects in SAC signaling can cause loss or gain of individual chromosomes (aneuploidy) which promotes tumorigenesis while complete failure of SAC results in cell death. The latter event has raised interest in discovery of low molecular weight (LMW) compounds targeting the SAC that could be developed into new anti-cancer therapeutics. In this study, we performed a cell-based, phenotypic high-throughput screen (HTS) to identify novel LMW compounds that inhibit SAC function and result in loss of cancer cell viability. Altogether, we screened 65 000 compounds and identified eight that forced the cells prematurely out of mitosis. The flavonoids fisetin and eupatorin, as well as the synthetic compounds termed SACi2 and SACi4, were characterized in more detail utilizing versatile cell-based and biochemical assays. To identify the molecular targets of these SAC-suppressing compounds, we investigated the conditions in which SAC activity became abrogated. Eupatorin, SACi2 and SACi4 preferentially abolished the tensionsensitive arm of the SAC, whereas fisetin lowered also the SAC activity evoked by lack of attachments between microtubules (MTs) and KTs. Consistent with the abrogation of SAC in response to low tension, our data indicate that all four compounds inhibited the activity of Aurora B kinase. This essential mitotic protein is required for correction of erratic MT-KT attachments, normal SAC signaling and execution of cytokinesis. Furthermore, eupatorin, SACi2 and SACi4 also inhibited Aurora A kinase that controls the centrosome maturation and separation and formation of the mitotic spindle apparatus. In line with the established profound mitotic roles of Aurora kinases, these small compounds perturbed SAC function, caused spindle abnormalities, such as multi- and monopolarity and fragmentation of centrosomes, and resulted in polyploidy due to defects in cytokinesis. Moreover, the compounds dramatically reduced viability of cancer cells. Taken together, using a cell-based HTS we were able to identify new LMW compounds targeting the SAC. We demonstrated for the first time a novel function for flavonoids as cellular inhibitors of Aurora kinases. Collectively, our data support the concept that loss of mitotic fidelity due to a non-functional SAC can reduce the viability of cancer cells, a phenomenon that may possess therapeutic value and fuel development of new anti-cancer drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human embryonic stem cells are pluripotent cells capable of renewing themselves and differentiating to specialized cell types. Because of their unique regenerative potential, pluripotent cells offer new opportunities for disease modeling, development of regenerative therapies, and treating diseases. Before pluripotent cells can be used in any therapeutic applications, there are numerous challenges to overcome. For instance, the key regulators of pluripotency need to be clarified. In addition, long term culture of pluripotent cells is associated with the accumulation of karyotypic abnormalities, which is a concern regarding the safe use of the cells for therapeutic purposes. The goal of the work presented in this thesis was to identify new factors involved in the maintenance of pluripotency, and to further characterize molecular mechanisms of selected candidate genes. Furthermore, we aimed to set up a new method for analyzing genomic integrity of pluripotent cells. The experimental design applied in this study involved a wide range of molecular biology, genome-wide, and computational techniques to study the pluripotency of stem cells and the functions of the target genes. In collaboration with instrument and reagent company Perkin Elmer, KaryoliteTM BoBsTM was implemented for detecting karyotypic changes of pluripotent cells. Novel genes were identified that are highly and specifically expressed in hES cells. Of these genes, L1TD1 and POLR3G were chosen for further investigation. The results revealed that both of these factors are vital for the maintenance of pluripotency and self-renewal of the hESCs. KaryoliteTM BoBsTM was validated as a novel method to detect karyotypic abnormalities in pluripotent stem cells. The results presented in this thesis offer significant new information on the regulatory networks associated with pluripotency. The results will facilitate in understanding developmental and cancer biology, as well as creating stem cell based applications. KaryoliteTM BoBsTM provides rapid, high-throughput, and cost-efficient tool for screening of human pluripotent cell cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of molecular diagnostic assays has increased tremendously in recent years.Nucleic acid diagnostic assays have been developed, especially for the detection of human pathogenic microbes and genetic markers predisposing to certain diseases. Closed-tube methods are preferred because they are usually faster and easier to perform than heterogenous methods and in addition, target nucleic acids are commonly amplified leading to risk of contamination of the following reactions by the amplification product if the reactions are opened. The present study introduces a new closed-tube switchable complementation probes based PCR assay concept where two non-fluorescent probes form a fluorescent lanthanide chelate complex in the presence of the target DNA. In this dual-probe PCR assay method one oligonucleotide probe carries a non-fluorescent lanthanide chelate and another probe a light absorbing antenna ligand. The fluorescent lanthanide chelate complex is formed only when the non-fluorescent probes are hybridized to adjacent positions into the target DNA bringing the reporter moieties in close proximity. The complex is formed by self-assembled lanthanide chelate complementation where the antenna ligand is coordinated to the lanthanide ion captured in the chelate. The complementation probes based assays with time-resolved fluorescence measurement showed low background signal level and hence, relatively high nucleic acid detection sensitivity (low picomolar target concentration). Different lanthanide chelate structures were explored and a new cyclic seven dentate lanthanide chelate was found suitable for complementation probe method. It was also found to resist relatively high PCR reaction temperatures, which was essential for the PCR assay applications. A seven-dentate chelate with two unoccupied coordination sites must be used instead of a more stable eight- or nine-dentate chelate because the antenna ligand needs to be coordinated to the free coordination sites of the lanthanide ion. The previously used linear seven-dentate lanthanide chelate was found to be unstable in PCR conditions and hence, the new cyclic chelate was needed. The complementation probe PCR assay method showed high signal-to-background ratio up to 300 due to a low background fluorescence level and the results (threshold cycles) in real-time PCR were reached approximately 6 amplification cycles earlier compared to the commonly used FRET-based closed-tube PCR method. The suitability of the complementation probe method for different nucleic acid assay applications was studied. 1) A duplex complementation probe C. trachomatis PCR assay with a simple 10-minute urine sample preparation was developed to study suitability of the method for clinical diagnostics. The performance of the C. trachomatis assay was equal to the commercial C. trachomatis nucleic acid amplification assay containing more complex sample preparation based on DNA extraction. 2) A PCR assay for the detection of HLA-DQA1*05 allele, that is used to predict the risk of type 1 diabetes, was developed to study the performance of the method in genotyping. A simple blood sample preparation was used where the nucleic acids were released from dried blood sample punches using high temperature and alkaline reaction conditions. The complementation probe HLA-DQA1*05 PCR assay showed good genotyping performance correlating 100% with the routinely used heterogenous reference assay. 3) To study the suitability of the complementation probe method for direct measurement of the target organism, e.g., in the culture media, the complementation probes were applied to amplificationfree closed-tube bacteriophage quantification by measuring M13 bacteriophage ssDNA. A low picomolar bacteriophage concentration was detected in a rapid 20- minute assay. The assay provides a quick and reliable alternative to the commonly used and relatively unreliable UV-photometry and time-consuming culture based bacteriophage detection methods and indicates that the method could also be used for direct measurement of other micro-organisms. The complementation probe PCR method has a low background signal level leading to a high signal-to-background ratio and relatively sensitive nucleic acid detection. The method is compatible with simple sample preparation and it was shown to tolerate residues of urine, blood, bacteria and bacterial culture media. The common trend in nucleic acid diagnostics is to create easy-to-use assays suitable for rapid near patient analysis. The complementation probe PCR assays with a brief sample preparation should be relatively easy to automate and hence, would allow the development of highperformance nucleic acid amplification assays with a short overall assay time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main features that confer high quality to the seed is its genetic purity, in which one of the major causes of contamination is the self-pollination of the female parent. Up to date, there is no accurate and fast methods for detecting such contamination. Thus, this work was carried out to certify the genetic purity in seeds of hybrid maize using different biochemical and DNA-based markers. Two single-cross hybrids and their parental lines derived from the maize breeding program at UFLA were evaluated by isoenzymatic pattern of alcohol dehydrogenase (ADH), esterase (EST), acid phosphatase (ACP), glutamate-oxaloacetate transaminase (GOT), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH), phosphoglucomutase (PGM), 6-phosphoglucomate dehydrogenase (PGDH), catalase (CAT) and ß-glucosidade (ßGLU) and by microsatellites markers. The enzymatic systems that were able to distinguish the hybrids from their parental line were the catalase, the isocitrate dehydrogenase and the esterase. The esterase showed a Mendelian segregation pattern for UFLA 8/3 hybrid, that enables a safer genetic purity certificate. Microsatellites were able to differentiate the hybrid lines and the respective parental lines. Moreover, this technique was fast, precise and without environment effects. For microsatellites, the amplification pattern was identical when young leaves or seeds were used as DNA source. The possibility of using seeds as DNA source would accelerate and facilitate the role process of the genetic purity analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Baltic Sea is a unique environment that contains unique genetic populations. In order to study these populations on a genetic level basic molecular research is needed. The aim of this thesis was to provide a basic genetic resource for population genomic studies by de novo assembling a transcriptome for the Baltic Sea isopod Idotea balthica. RNA was extracted from a whole single adult male isopod and sequenced using Illumina (125bp PE) RNA-Seq. The reads were preprocessed using FASTQC for quality control, TRIMMOMATIC for trimming, and RCORRECTOR for error correction. The preprocessed reads were then assembled with TRINITY, a de Bruijn graph-based assembler, using different k-mer sizes. The different assemblies were combined and clustered using CD-HIT. The assemblies were evaluated using TRANSRATE for quality and filtering, BUSCO for completeness, and TRANSDECODER for annotation potential. The 25-mer assembly was annotated using PANNZER (protein annotation with z-score) and BLASTX. The 25-mer assembly represents the best first draft assembly since it contains the most information. However, this assembly shows high levels of polymorphism, which currently cannot be differentiated as paralogs or allelic variants. Furthermore, this assembly is incomplete, which could be improved by sampling additional developmental stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During infection, the model plant Arabidopsis thaliana is capable of activating long lasting defence responses both in tissue directly affected by the pathogen and in more distal tissue. Systemic acquired resistance (SAR) is a type of systemic defence response deployed against biotrophic pathogens resulting in altered plant gene expression and production of antimicrobial compounds. One such gene involved in plant defence is called pathogenesis-related 1 (PR1) and is under the control of several protein regulators. TGA II-clade transcription factors (namely TGA2) repress PR1 activity prior to infection by forming large oligomeric complexes effectively blocking gene transcription. After pathogen detection, these complexes are dispersed by a mechanism unknown until now and free TGA molecules interact with the non-expressor of pathogenesis-related gene 1 (NPR1) protein forming an activating complex enabling PR1 transcription. This study elucidates the TGA2 dissociation mechanism by introducing protein kinase CK2 into this process. This enzyme efficiently phosphorylates TGA2 resulting in two crucial events. Firstly, the DNA-binding ability of this transcription factor is completely abolished explaining how the large TGA2 complexes are quickly evicted from the PR1 promoter. Secondly, a portion of TGA2 molecules dissociate from the complexes after phosphorylation which likely makes them available for the formation of the TGA2-NPR1 activating complex. We also show that phosphorylation of a multiserine motif found within TGA2’s N terminus is responsible for the change of affinity to DNA, while modification of a single threonine in the leucine zipper domain seems to be responsible for deoligomerization. Despite the substantial changes caused by phosphorylation, TGA2 is still capable of interacting with NPR1 and these proteins together form a complex on DNA promoting PR1 transcription. Therefore, we propose a change in the current model of how PR1 is regulated by adding CK2 which targets TGA2 displacing it’s complexes from the promoter and providing solitary TGA2 molecules for assembly of the activating complex. Amino acid sequences of regions targeted by CK2 in Arabidopsis TGA2 are similar to those found in TGA2 homologs in rice and tobacco. Therefore, the molecular mechanism that we have identified may be conserved among various plants, including important crop species, adding to the significance of our findings.