946 resultados para Moderate Exercise
Resumo:
Exercise is classically associated with muscular soreness, presenting one to two days later, delayed onset muscular soreness. Blood muscle enzymes and protein elevations are characteristic, and may cause renal failure. Creatin phosphokinase peak appears on the fourth day and depends on exercise type and individual parameters. This effect is attenuated with repeated bouts, by habituation. Metabolic complications are rare. The knowledge of this reaction, even with common exercises, allows to postpone investigations for a complex metabolic disorder, or to avoid stopping a medication for fear of a side effect, as with statins. Indeed, it is necessary to wait for seven days without any exercise before interpreting an elevated CK result.
Resumo:
To determine the metabolic effects of a single bout of exercise performed after a meal or in the fasting state, nine healthy subjects were studied over two 8-h periods during which net substrate oxidation was monitored by indirect calorimetry. On one occasion, exercise was performed 90 min after ingestion of a meal labeled with [U-13C]glucose [protocol meal-exercise (M-E)]. On the second occasion, exercise was performed after an overnight fast and was followed 30 min later by ingestion of an identical meal [protocol exercise-meal (E-M)]. Energy balances were similar in both protocols, but carbohydrate balance was positive (42.2 +/- 5.1 g), and lipid balance was negative (-11.1 +/- 2.0) during E-M, whereas they were nearly even during M-E. Total glycogen synthesis was calculated as carbohydrate intake minus oxidation of exogenous 13C-labeled carbohydrate (calculated from 13CO2 production). Total glycogen synthesis was increased by 90% (from 47.6 +/- 3.8 to 90.7 +/- 5.4 g, P < 0.0001) during E-M vs. M-E. Endogenous glycogen breakdown was calculated as net carbohydrate oxidation minus oxidation of exogenous carbohydrate and was increased by 44% (from 35.8 +/- 5.6 to 51.7 +/- 6.6 g, P < 0.004) during E-M. It is concluded that exercise performed in the fasting state stimulates glycogen turnover and fat oxidation.
Resumo:
PURPOSE: Low tidal volume ventilation and permissive hypercapnia are required in patients with sepsis complicated by ARDS. The effects of hypercapnia on tissue oxidative metabolism in this setting are unknown. We therefore determined the effects of moderate hypercapnia on markers of systemic and splanchnic oxidative metabolism in an animal model of endotoxemia. METHODS: Anesthetized rats maintained at a PaCO(2) of 30, 40 or 60 mmHg were challenged with endotoxin. A control group (PaCO(2) 40 mmHg) received isotonic saline. Hemodynamic variables, arterial lactate, pyruvate, and ketone bodies were measured at baseline and after 4 h. Tissue adenosine triphosphate (ATP) and lactate were measured in the small intestine and the liver after 4 h. RESULTS: Endotoxin resulted in low cardiac output, increased lactate/pyruvate ratio and decreased ketone body ratio. These changes were not influenced by hypercapnia, but were more severe with hypocapnia. In the liver, ATP decreased and lactate increased independently from PaCO(2) after endotoxin. In contrast, the drop of ATP and the rise in lactate triggered by endotoxin in the intestine were prevented by hypercapnia. CONCLUSIONS: During endotoxemia in rats, moderate hypercapnia prevents the deterioration of tissue energetics in the intestine.
Resumo:
Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P<0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P>0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the 'normal' cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.
Resumo:
BACKGROUND: The considerable malaria decline in several countries challenges the strategy of chemoprophylaxis for travellers visiting moderate- to low-risk areas. An international consensus on the best strategy is lacking. It is essential to include travellers' opinions in the decision process. The preference of travellers regarding malaria prevention for moderate- to low-risk areas, related to their risk perception, as well as the reasons for their choices were investigated. METHODS: Prior to pre-travel consultation in the Travel Clinic, a self-administered questionnaire was given to travellers visiting moderate- to low-risk malaria areas. Four preventive options were proposed to the traveller, i.e., bite prevention only, chemoprophylaxis, stand-by emergency treatment alone, and stand-by emergency treatment with rapid diagnostic test. The information was accompanied by a risk scale for incidence of malaria, anti-malarial adverse drug reactions and other travel-related risks, inspired by Paling palettes from the Risk Communication Institute. RESULTS: A total of 391 travellers were included from December 2012 to December 2013. Fifty-nine (15%) opted for chemoprophylaxis, 116 (30%) for stand-by emergency treatment, 112 (29%) for stand-by emergency treatment with rapid diagnostic test, 100 (26%) for bite prevention only, and four (1%) for other choices. Travellers choosing chemoprophylaxis justified their choice for security reasons (42%), better preventive action (29%), higher efficacy (15%) and easiness (15%). The reasons for choosing stand-by treatment or bite prevention only were less medication consumed (29%), less adverse drug reactions (23%) and lower price (9%). Those who chose chemoprophylaxis were more likely to have used it in the past (OR = 3.0 (CI 1.7-5.44)), but were not different in terms of demographic, travel characteristics or risk behaviour. CONCLUSIONS: When travelling to moderate- to low-risk malaria areas, 85% of interviewees chose not to take chemoprophylaxis as malaria prevention, although most guidelines recommend it. They had coherent reasons for their choice. New recommendations should include shared decision-making to take into account travellers' preferences.
Resumo:
Endothelial cell release of nitric oxide (NO) is a defining characteristic of nondiseased arteries, and abnormal endothelial NO release is both a marker of early atherosclerosis and a predictor of its progression and future events. Healthy coronaries respond to endothelial-dependent stressors with vasodilatation and increased coronary blood flow (CBF), but those with endothelial dysfunction respond with paradoxical vasoconstriction and reduced CBF. Recently, coronary MRI and isometric handgrip exercise (IHE) were reported to noninvasively quantify coronary endothelial function (CEF). However, it is not known whether the coronary response to IHE is actually mediated by NO and/or whether it is reproducible over weeks. To determine the contribution of NO, we studied the coronary response to IHE before and during infusion of N(G)-monomethyl-l-arginine (l-NMMA, 0.3 mg·kg(-1)·min(-1)), a NO-synthase inhibitor, in healthy volunteers. For reproducibility, we performed two MRI-IHE studies ∼8 wk apart in healthy subjects and patients with coronary artery disease (CAD). Changes from rest to IHE in coronary cross-sectional area (%CSA) and diastolic CBF (%CBF) were quantified. l-NMMA completely blocked normal coronary vasodilation during IHE [%CSA, 12.9 ± 2.5 (mean ± SE, placebo) vs. -0.3 ± 1.6% (l-NMMA); P < 0.001] and significantly blunted the increase in flow [%CBF, 47.7 ± 6.4 (placebo) vs. 10.6 ± 4.6% (l-NMMA); P < 0.001]. MRI-IHE measures obtained weeks apart strongly correlated for CSA (P < 0.0001) and CBF (P < 0.01). In conclusion, the normal human coronary vasoactive response to IHE is primarily mediated by NO. This noninvasive, reproducible MRI-IHE exam of NO-mediated CEF promises to be useful for studying CAD pathogenesis in low-risk populations and for evaluating translational strategies designed to alter CAD in patients.
Resumo:
BACKGROUND: Hallux valgus is one of the most common forefoot problems in females. Studies have looked at gait alterations due to hallux valgus deformity, assessing temporal, kinematic or plantar pressure parameters individually. The present study, however, aims to assess all listed parameters at once and to isolate the most clinically relevant gait parameters for moderate to severe hallux valgus deformity with the intent of improving post-operative patient prognosis and rehabilitation. METHODS: The study included 26 feet with moderate to severe hallux valgus deformity and 30 feet with no sign of hallux valgus in female participants. Initially, weight bearing radiographs and foot and ankle clinical scores were assessed. Gait assessment was then performed utilizing pressure insoles (PEDAR®) and inertial sensors (Physilog®) and the two groups were compared using a non-parametric statistical hypothesis test (Wilcoxon rank sum, P<0.05). Furthermore, forward stepwise regression was used to reduce the number of gait parameters to the most clinically relevant and correlation of these parameters was assessed with the clinical score. FINDINGS: Overall, the results showed clear deterioration in several gait parameters in the hallux valgus group compared to controls and 9 gait parameters (effect size between 1.03 and 1.76) were successfully isolated to best describe the altered gait in hallux valgus deformity (r(2)=0.71) as well as showed good correlation with clinical scores. INTERPRETATION: Our results, and nine listed parameters, could serve as benchmark for characterization of hallux valgus and objective evaluation of treatment efficacy.
Resumo:
Background Exhausting exercise reduces the mitochondrial DNA (mtDNA) content in the skeletal muscle of healthy subjects due to oxidative damage. Since patients with chronic obstructive pulmonary disease (COPD) suffer enhanced oxidative stress during exercise, it was hypothesised that the mtDNA content will be further reduced. Objective To investigate the effects of exercise above and below the lactate threshold (LT) on the mtDNA content of skeletal muscle of patients with COPD. Methods Eleven patients with COPD (676 8 years; forced expiratory volume in 1s (FEV1)456 8%ref) and 10 healthy controls (666 4 years; FEV1 906 7% ref) cycled 45 min above LT (65% peak oxygen uptake (V9O2 peak)and another 7 patients (656 6 years; FEV1 506 4%ref)and 7 controls (566 9 years;FEV1 926 6%ref) cycled 45 min below their LT (50% V9O2 peak). Biopsies from the vastus lateralis muscle were obtained before exercise, immediately after and 1 h, 1 day and 1 week later to determine by PCR the mtDNA/nuclear DNA (nDNA) ratio (a marker of mtDNA content) and the expression of the peroxisome proliferator-activated receptor- g coactivator-1 a (PGC-1a)mRNA and the amount of reactive oxygen species produced during exercise was estimated from total V9O2. Results Skeletal muscle mtDNA/nDNA fell significantly after exercise above the LT both in controls and in patients with COPD, but the changes were greater in those with COPD. These changes correlated with production of reactive oxygen species, increases in manganese superoxide dismutase and PGC-1 a mRNA and returned to baseline values 1 week later. This pattern of response wa was also observed, albeit minimised, in patients exercising below the LT. Conclusions In patients with COPD, exercise enhances the decrease in mtDNA content of skeletal muscle and the expression of PGC-1 a mRNA seen in healthy subjects probably due to oxidative stress.
Resumo:
To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near sea-level (SL; FiO2 = 20.9%), moderate (MH; FiO2 = 16.8%) or severe normobaric hypoxia (SH; FiO2 = 13.3%) followed, 6 min later, by four 5-s sprints (recovery = 25 s) in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (-8.2%) compared to SL (-5.3%) and MH (-7.2%); P < 0.05], changes in contact time, step frequency and root mean square activity (surface electromyography) of the quadriceps (Rectus femoris muscle) in SH exceeded those in SL and MH (P < 0.05). During first sprint of the subsequent normoxic set, the distance covered (99.6, 96.4, and 98.3% of sprint 1 in SL, MH, and SH, respectively), the main kinetic (mean vertical, horizontal, and resultant forces) and kinematic (contact time and step frequency) variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1-8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure), sprint mechanical performance and neural alterations were largely influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level, with a similar fatigue pattern across conditions during subsequent repeated sprints in normoxia.
Resumo:
BACKGROUND: Globally, Africans and African Americans experience a disproportionate burden of type 2 diabetes, compared to other race and ethnic groups. The aim of the study was to examine the association of plasma glucose with indices of glucose metabolism in young adults of African origin from 5 different countries. METHODS: We identified participants from the Modeling the Epidemiologic Transition Study, an international study of weight change and cardiovascular disease (CVD) risk in five populations of African origin: USA (US), Jamaica, Ghana, South Africa, and Seychelles. For the current study, we included 667 participants (34.8 ± 6.3 years), with measures of plasma glucose, insulin, leptin, and adiponectin, as well as moderate and vigorous physical activity (MVPA, minutes/day [min/day]), daily sedentary time (min/day), anthropometrics, and body composition. RESULTS: Among the 282 men, body mass index (BMI) ranged from 22.1 to 29.6 kg/m(2) in men and from 25.8 to 34.8 kg/m(2) in 385 women. MVPA ranged from 26.2 to 47.1 min/day in men, and from 14.3 to 27.3 min/day in women and correlated with adiposity (BMI, waist size, and % body fat) only among US males after controlling for age. Plasma glucose ranged from 4.6 ± 0.8 mmol/L in the South African men to 5.8 mmol/L US men, while the overall prevalence for diabetes was very low, except in the US men and women (6.7 and 12 %, respectively). Using multivariate linear regression, glucose was associated with BMI, age, sex, smoking hypertension, daily sedentary time but not daily MVPA. CONCLUSION: Obesity, metabolic risk, and other potential determinants vary significantly between populations at differing stages of the epidemiologic transition, requiring tailored public health policies to address local population characteristics.
Resumo:
Regular aerobic exercise training, which is touted as a way to ameliorate metabolic diseases, increases aerobic capacity. Aerobic capacity usually declines with advanced age. The decline in aerobic capacity is typically associated by a decrease in the quality of skeletal muscle. At the molecular level, this decreased quality comes in part from perturbations in skeletal muscle mitochondria. Of particular is a decrease in the total amount of mitochondria that occupy the skeletal muscle volume. What is not well established is if this decrease in mitochondrial content is due to inactive lifestyle or the process of aging. Herein, the work of the thesis shows a clear connection between mitochondrial content and aerobic capacity. This indicates that active individuals with higher VChmax levels also contain higher volumes of mitochondria inside their muscle as opposed to sedentary counterparts who have lower levels of mitochondrial content. Upon taking these previously sedentary individuals and entering them into an aerobic exercise intervention, they are able to recover their mitochondrial content as well as function to similar levels of lifelong athletes of the same age. Furthermore, the results of this thesis show that mitochondrial content and function also correlate with exercise efficiency. If one is more efficient, he/she is able to expend less energy for a similar power output. Furthermore, individuals who increase in efficiency also increase in the ability to oxidize and utilize fat during pro-longed exercise. This increased reliance on fat after the intervention is associated with an increased amount of mitochondria, particularly in the intermyofibrillar region of skeletal muscle. Therefore, elderly adults who were once sedentary were able to recover mitochondrial content and function and are able to reap other health benefits from regular aerobic exercise training. Aging per se does not seem to be the culprit that will lead to metabolic diseases but rather it seems to be a lack of physical activity. -- Un entraînement sportif d'endurance, connu pour réduire le risque de développer des maladies métaboliques, augmente notre capacité aérobie. La capacité aérobie diminue généralement avec l'âge. Ce déclin est typiquement associé d'une diminution de la qualité du muscle squelettique. Au niveau moléculaire, cette diminution est due à des perturbations dans les mitochondries du muscle squelettique,, ce qui conduit à une diminution de la quantité totale des mitochondries présentes dans le muscle squelettique. Il n'a pas encore été établi si cette diminution de la teneur mitochondriale est due à un mode de vie sédentaire ou au processus du vieillissement. Ce travail de thèse montre un lien clair entre le contenu mitochondrial et la capacité aérobie. Il indique que des personnes âgées actives, avec des niveaux de V02max plus élevés, possèdent également un volume plus élevé de mitochondries dans leurs muscles en comparaison à leurs homologues sédentaires. En prenant des individus sédentaires et leur faisant pratiquer une activité physique aérobie, il est possible d'accroître leur contenu de même que leur fonction mitochondriale à des niveaux similaires à ceux d'athlètes du même âge ayant pratiqué une activité physique tout au long de leur vie. De plus, les résultats de ce travail démontrent que le contenu et la fonction mitochondriale sont en corrélation avec l'efficiscience lors d'exercice physique. En agumentant l'effiscience, les personnes sont alors capables de dépenser moins d'énergie pour une puissance d'exercice similaire. Donc, un volume mitochondrial accru dans le muscle squelettique, associé à une fonction mitochondriale améliorée, est associté à une augmentation de l'effiscience. En outre, les personnes qui augmentent leur effiscience, augmentent aussi leur capacité à oxyder les graisses durant l'exercice prolongé. Une augmentation du recours au graisses après l'intervention est associée à une quantité accrue de mitochondries, en particulier dans la région inter-myofibrillaire du muscle squelettique. Par conséquent, les personnes âgées autrefois sédentaires sont en mesure de récupérer leur contenu et leur fonction mitochondriale ainsi que d'autres avantages pour la santé grâce à un entraînement aérobie régulier. Le vieillissement en soi ne semble donc pas être le coupable conduisant aux maladies métaboliques qui semblent plutôt être lié à un manque d'activité physique.
Resumo:
Background. Le considérable déclin de la malaria au niveau mondial remet en question la stratégie de chimioprophylaxie pour les voyageurs à destination de pays à risque modéré à faible de malaria. Un consensus international de la meilleure stratégie de prévention reste à trouver. Suivant le mouvement actuel de partage décisionnel, cette étude invite le voyageur au sein du débat comme acteur du processus de décision. Objectifs. Investiguer les préférences des voyageurs à destination de pays à risque modéré à faible de malaria en matière de prévention contre la malaria, en mettant en perspective leur perception du risque et les raisons de leur choix. Méthodologie. Dans la salle d'attente du Centre de Vaccination et Médecine de Voyage, les voyageurs à destination de risque modéré à faible de malaria remplissent un questionnaire et choisissent la méthode de prévention qu'ils préfèrent aidés d'un tableau leur proposant 4 choix possible ; mesure de prévention des piqûres de moustique uniquement, chimioprophylaxie, traitement de réserve seul et traitement de réserve avec test diagnostic rapide. Ils reçoivent aussi une échelle de risque illustrant les risques de malaria et d'effets indésirables des anti-malariques comparés à différents autres risques liés au voyage, inspirée par les palettes de Paling de la Communication Risk Institut. Résultats. De décembre 2012 à décembre 2013, 391 voyageurs on été inclus. 59 (15%) ont choisi la chimioprophylaxie, 116 (30%) un traitement de réserve, 112 (29%) un traitement de réserve avec test rapide diagnostic, 100 (26%) une prévention des piqûre de moustiques uniquement, and 4 (1%) plusieurs alternatives. Les raisons de choisir une chimioprophylaxie étaient la sécurité (42%), l'action préventive (29%), l'efficacité (15%) et la facilité d'utilisation (15%). Les raisons de choisir un traitement de réserve étaient moins de prise de médicament (29%), moins d'effets secondaires de ceux-ci (23%) et le prix (9%). Les voyageurs choisissant la chimioprohylaxie l'avaient plus souvent déjà utilisée par le passé [OR=3.0 (CI 1.7-5.44)], sans différence en terme de profil démographique, caractéristique du voyage ou comportement à risque. Conclusions. Quand interrogés, 85% des voyageurs à destination de pays à risque modéré à faible de malaria préfèrent ne pas prendre la chimioprophylaxie, bien que la plupart des pays la recommande encore. Les raisons avancées sont cohérentes avec leur choix. Les nouvelles recommandations devraient prendre en compte la préférence des voyageurs et inclure un processus de décision partagé.
Resumo:
Background Chronic obstructive pulmonary disease (COPD) is increasingly considered a heterogeneous condition. It was hypothesised that COPD, as currently defined, includes different clinically relevant subtypes. Methods To identify and validate COPD subtypes, 342 subjects hospitalised for the first time because of a COPD exacerbation were recruited. Three months after discharge, when clinically stable, symptoms and quality of life, lung function, exercise capacity, nutritional status, biomarkers of systemic and bronchial inflammation, sputum microbiology, CT of the thorax and echocardiography were assessed. COPD groups were identified by partitioning cluster analysis and validated prospectively against cause-specific hospitalisations and all-cause mortality during a 4 year follow-up. Results Three COPD groups were identified: group 1 (n ¼ 126, 67 years) was characterised by severe airflow limitation (postbronchodilator forced expiratory volume in 1 s (FEV 1 ) 38% predicted) and worse performance in most of the respiratory domains of the disease; group 2 (n ¼ 125, 69 years) showed milder airflow limitation (FEV 1 63% predicted); and group 3 (n ¼ 91, 67 years) combined a similarly milder airflow limitation (FEV 1 58% predicted) with a high proportion of obesity, cardiovascular disorders, iabetes and systemic inflammation. During follow-up, group 1 had more frequent hospitalisations due to COPD (HR 3.28, p < 0.001) and higher all-cause mortality (HR 2.36, p ¼ 0.018) than the other two groups, whereas group 3 had more admissions due to cardiovascular disease (HR 2.87, p ¼ 0.014). Conclusions In patients with COPD recruited at their first hospitalisation, three different COPD subtypes were identified and prospectively validated:"severe respiratory COPD","moderate respiratory COPD", and"systemic COPD'