994 resultados para Modeling Methodology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Odds ratios for head and neck cancer increase with greater cigarette and alcohol use and lower body mass index (BMI; weight (kg)/height(2) (m(2))). Using data from the International Head and Neck Cancer Epidemiology Consortium, the authors conducted a formal analysis of BMI as a modifier of smoking- and alcohol-related effects. Analysis of never and current smokers included 6,333 cases, while analysis of never drinkers and consumers of < or =10 drinks/day included 8,452 cases. There were 8,000 or more controls, depending on the analysis. Odds ratios for all sites increased with lower BMI, greater smoking, and greater drinking. In polytomous regression, odds ratios for BMI (P = 0.65), smoking (P = 0.52), and drinking (P = 0.73) were homogeneous for oral cavity and pharyngeal cancers. Odds ratios for BMI and drinking were greater for oral cavity/pharyngeal cancer (P < 0.01), while smoking odds ratios were greater for laryngeal cancer (P < 0.01). Lower BMI enhanced smoking- and drinking-related odds ratios for oral cavity/pharyngeal cancer (P < 0.01), while BMI did not modify smoking and drinking odds ratios for laryngeal cancer. The increased odds ratios for all sites with low BMI may suggest related carcinogenic mechanisms; however, BMI modification of smoking and drinking odds ratios for cancer of the oral cavity/pharynx but not larynx cancer suggests additional factors specific to oral cavity/pharynx cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses an infinite hidden Markov model (IIHMM) to analyze U.S. inflation dynamics with a particular focus on the persistence of inflation. The IHMM is a Bayesian nonparametric approach to modeling structural breaks. It allows for an unknown number of breakpoints and is a flexible and attractive alternative to existing methods. We found a clear structural break during the recent financial crisis. Prior to that, inflation persistence was high and fairly constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, multi-atlas fusion methods have gainedsignificant attention in medical image segmentation. Inthis paper, we propose a general Markov Random Field(MRF) based framework that can perform edge-preservingsmoothing of the labels at the time of fusing the labelsitself. More specifically, we formulate the label fusionproblem with MRF-based neighborhood priors, as an energyminimization problem containing a unary data term and apairwise smoothness term. We present how the existingfusion methods like majority voting, global weightedvoting and local weighted voting methods can be reframedto profit from the proposed framework, for generatingmore accurate segmentations as well as more contiguoussegmentations by getting rid of holes and islands. Theproposed framework is evaluated for segmenting lymphnodes in 3D head and neck CT images. A comparison ofvarious fusion algorithms is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the dynamic and asymmetric dependence structure between equity portfolios from the US and UK. We demonstrate the statistical significance of dynamic asymmetric copula models in modelling and forecasting market risk. First, we construct “high-minus-low" equity portfolios sorted on beta, coskewness, and cokurtosis. We find substantial evidence of dynamic and asymmetric dependence between characteristic-sorted portfolios. Second, we consider a dynamic asymmetric copula model by combining the generalized hyperbolic skewed t copula with the generalized autoregressive score (GAS) model to capture both the multivariate non-normality and the dynamic and asymmetric dependence between equity portfolios. We demonstrate its usefulness by evaluating the forecasting performance of Value-at-Risk and Expected Shortfall for the high-minus-low portfolios. From back-testing, e find consistent and robust evidence that our dynamic asymmetric copula model provides the most accurate forecasts, indicating the importance of incorporating the dynamic and asymmetric dependence structure in risk management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of ethereal washing of insect pheromone glands of female moths, GC-MS detection along with microchemical reactions and electroantennogram (EAG) survey, six economically important insect species were targeted for pheromone identification. The discovery of a natural pheromone inhibitor, chemo-selectivity and species isolation by pheromone will be described. The modified triple bond migration and triethylamine liganded vinyl cuprate were applied for achiral pheromone synthesis in double bond formation. Some optically active pheromones and their stereoisomers were synthesized through chiral pool or asymmetric synthesis. Some examples of chiral recognition of insects towards their chiral pheromones will be discussed. A CaH2 and silica gel catalyzed Sharpless Expoxidation Reaction was found in shortening the reaction time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PECUBE is a three-dimensional thermal-kinematic code capable of solving the heat production-diffusion-advection equation under a temporally varying surface boundary condition. It was initially developed to assess the effects of time-varying surface topography (relief) on low-temperature thermochronological datasets. Thermochronometric ages are predicted by tracking the time-temperature histories of rock-particles ending up at the surface and by combining these with various age-prediction models. In the decade since its inception, the PECUBE code has been under continuous development as its use became wider and addressed different tectonic-geomorphic problems. This paper describes several major recent improvements in the code, including its integration with an inverse-modeling package based on the Neighborhood Algorithm, the incorporation of fault-controlled kinematics, several different ways to address topographic and drainage change through time, the ability to predict subsurface (tunnel or borehole) data, prediction of detrital thermochronology data and a method to compare these with observations, and the coupling with landscape-evolution (or surface-process) models. Each new development is described together with one or several applications, so that the reader and potential user can clearly assess and make use of the capabilities of PECUBE. We end with describing some developments that are currently underway or should take place in the foreseeable future. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discuses current strategies for the development of AIDS vaccines wich allow immunzation to disturb the natural course of HIV at different detailed stages of its life cycle. Mathematical models describing the main biological phenomena (i.e. virus and vaccine induced T4 cell growth; virus and vaccine induced activation latently infected T4 cells; incremental changes immune response as infection progress; antibody dependent enhancement and neutralization of infection) and allowing for different vaccination strategies serve as a backgroud for computer simulations. The mathematical models reproduce updated information on the behavior of immune cells, antibody concentrations and free viruses. The results point to some controversial outcomes of an AIDS vaccine such as an early increase in virus concentration among vaccinated when compared to nonvaccinated individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study was performed at OCAS, the Steel Research Centre of ArcelorMittal for the Industry market. The major aim of this research was to obtain an optimized tensile testing methodology with in-situ H-charging to reveal the hydrogen embrittlement in various high strength steels. The second aim of this study has been the mechanical characterization of the hydrogen effect on hight strength carbon steels with varying microstructure, i.e. ferrite-martensite and ferrite-bainite grades. The optimal parameters for H-charging - which influence the tensile test results (sample geometry type of electrolyte, charging methods effect of steel type, etc.) - were defined and applied to Slow Strain Rate testing, Incremental Step Loading and Constant Load Testing. To better understand the initiation and propagation of cracks during tensile testing with in-situ H-charging, and to make the correlation with crystallographic orientation, some materials have been analyzed in the SEM in combination with the EBSD technique. The introduction of a notch on the tensile samples permits to reach a significantly improved reproducibility of the results. Comparing the various steel grades reveals that Dual Phase (ferrite-martensite) steels are more sensitive to hydrogen induced cracking than the FB (ferritic-bainitic) ones. This higher sensitivity to hydrogen was found back in the reduced failure times, increased creep rates and enhanced crack initiation (SEM) for the Dual Phase steels in comparison with the FB steels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited information is available regarding the methodology required to characterize hashish seizures for assessing the presence or the absence of a chemical link between two seizures. This casework report presents the methodology applied for assessing that two different police seizures were coming from the same block before this latter one was split. The chemical signature was extracted using GC-MS analysis and the implemented methodology consists in a study of intra- and inter-variability distributions based on the measurement of the chemical profiles similarity using a number of hashish seizures and the calculation of the Pearson correlation coefficient. Different statistical scenarios (i.e., a combination of data pretreatment techniques and selection of target compounds) were tested to find the most discriminating one. Seven compounds showing high discrimination capabilities were selected on which a specific statistical data pretreatment was applied. Based on the results, the statistical model built for comparing the hashish seizures leads to low error rates. Therefore, the implemented methodology is suitable for the chemical profiling of hashish seizures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Species distribution modelling is used increasingly in both applied and theoretical research to predict how species are distributed and to understand attributes of species' environmental requirements. In species distribution modelling, various statistical methods are used that combine species occurrence data with environmental spatial data layers to predict the suitability of any site for that species. While the number of data sharing initiatives involving species' occurrences in the scientific community has increased dramatically over the past few years, various data quality and methodological concerns related to using these data for species distribution modelling have not been addressed adequately. 2. We evaluated how uncertainty in georeferences and associated locational error in occurrences influence species distribution modelling using two treatments: (1) a control treatment where models were calibrated with original, accurate data and (2) an error treatment where data were first degraded spatially to simulate locational error. To incorporate error into the coordinates, we moved each coordinate with a random number drawn from the normal distribution with a mean of zero and a standard deviation of 5 km. We evaluated the influence of error on the performance of 10 commonly used distributional modelling techniques applied to 40 species in four distinct geographical regions. 3. Locational error in occurrences reduced model performance in three of these regions; relatively accurate predictions of species distributions were possible for most species, even with degraded occurrences. Two species distribution modelling techniques, boosted regression trees and maximum entropy, were the best performing models in the face of locational errors. The results obtained with boosted regression trees were only slightly degraded by errors in location, and the results obtained with the maximum entropy approach were not affected by such errors. 4. Synthesis and applications. To use the vast array of occurrence data that exists currently for research and management relating to the geographical ranges of species, modellers need to know the influence of locational error on model quality and whether some modelling techniques are particularly robust to error. We show that certain modelling techniques are particularly robust to a moderate level of locational error and that useful predictions of species distributions can be made even when occurrence data include some error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.