987 resultados para Mizrahi, Elijah, ca. 1455-ca. 1525.
Resumo:
Ca$\sp{++}$/calmodulin-dependent protein kinase II (CaM-KII) is highly concentrated in mammalian brain, comprising as much as 2% of the total protein in some regions. In forebrain, CaM-KII has been shown to be enriched in postsynaptic structures where it has been implicated in maintaining cytoskeletal structure, and more recently in signal transduction mechanisms and processes underlying learning and memory. CaM-KII appears to exist as a holoenzyme composed of two related yet distinct subunits, alpha and beta. The ratio of the subunits in the holoenzyme varies with different brain regions and to some degree with subcellular fractions. The two subunits also display distinct developmental profiles. Levels of alpha subunit are not evident at birth but increase dramatically during postnatal development, while levels of beta subunit are readily detected at birth and only gradual increase postnatally. The distinct regional, subcellular and developmental distribution of the two subunits of CaM-KII have prompted us to examine factors involved in regulating the synthesis of the subunit proteins.^ This dissertation addresses the regional and developmental expression of the mRNAs for the individual subunits using in situ hybridization histochemistry and northern slot-blot analysis. By comparing the developmental profile of each mRNA with that of its respective protein, we have determined that initiation of gene transcription is likely the primary site for regulating CaM-KII protein levels. Furthermore, the distinct cytoarchitecture of the hippocampus has allowed us to demonstrate that the alpha, but not beta subunit mRNA is localized in dendrites of certain forebrain neurons. The localization of alpha subunit mRNA at postsynaptic structures, in concert with the accumulation of subunit protein, suggests that dendritic synthesis of CaM-KII alpha subunit may be important for maintaining postsynaptic structure and/or function. ^
Resumo:
$\rm Ca\sp{2+}$-dependent exposure of an N-terminal hydrophobic region in troponin C (TnC) is thought to be important for the regulation of contraction in striated muscle. To study these conformational changes in cardiac troponin (cTnC), the $\varepsilon$C and $\varepsilon$H chemical shifts for all 10 Met residues in cTnC were sequence-specific assigned on NMR spectra using a combination of two dimensional NMR techniques and site-directed mutagenesis. The assigned methyl-Met chemical shifts were used as structural markers to monitor conformational changes induced by $\rm Ca\sp{2+}.$ The results showed that binding of $\rm Ca\sp{2+}$ to the regulatory site in the N-domain induced large changes in the $\varepsilon$H and $\varepsilon$C chemical shifts of Met 45, Met 80, Met 81 in the predicted N-terminal hydrophobic region, but had no effect on the chemical shifts of Met residues located in the C-domain. These results suggest that the $\rm Ca\sp{2+}$-dependent functions of cTnC are mainly through N-terminal domain of cTnC.^ To further define the molecular mechanism by which TnC regulates muscle contraction, single Cys residues were engineered at positions 45, 81, 84 or 85 in the N-terminal hydrophobic region of cTnC to provide sites for attachment of specific blocking groups. Blocking groups were coupled to these Cys residues in cTnC mutants and the covalent adducts were tested for activity in TnC-extracted myofibrils. Covalent modification of cTnC(C45) had no effect on maximal myofibril ATPase activity. Greatly decreased myofibril ATPase activity resulted when the peptide or biotin was conjugated to residue 81 in cTnC(C81), while less inhibition resulted from covalent modification of cTnC(C84) or cTnC(C85). The results suggest that limited sites of the N-terminal hydrophobic region in cTnC are important for transducing the $\rm Ca\sp{2+}$ signal to troponin I (TnI) and are sensitive to modification, while other regions are less important or can adapt to steric hindrances introduced by bulky blocking groups.^ Although the exposed TnI interaction site in the N-terminal hydrophobic region of TnC is crucial for function of TnC, other regions in the N-domain of TnC may also participate in transducing the $\rm Ca\sp{2+}$ signal and conferring the maximal activation of actomyosin ATPase. The interactions between the B-/C-helices of cTnC and cTnI were characterized using a combination of site-directed mutagenesis, fluorescence and covalent modification. The results suggest that the $\rm Ca\sp{2+}$-dependent interactions of the B-/C-helices of cTnC with TnI may be required for the maximal activation of muscle contraction. ^
Resumo:
High-resolution major and trace elements (Sr, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, U, Tl, Al, S, Ca, Ti, V, Cr, Mn, Fe, and Co) quantified in a Mount Everest ice core ( 6518 m above sea level) spanning the period 1650-2002 AD provides the first Asian record of trace element concentrations from the pre-industrial era, and the first continuous high-resolution Asian record from which natural baseline concentrations and subsequent changes due to anthropogenic activities can be examined. Modern concentrations of most elements remain within the pre-industrial range; however, Bi, U, and Cs concentrations and their enrichment factors (EF) have increased since the similar to 1950s, and S and Ca concentrations and their EFs have increased since the late 1980s. A comparison of the Bi, U, Cs, S, and Ca data with other ice core records and production data indicates that the increase in atmospheric concentrations of trace elements is widespread, but that enrichment varies regionally. Likely sources for the recent enrichment of these elements include mining, metal smelting, oil and coal combustion, and end uses for Bi, and mining and refinement for U and Cs. The source of the synchronous enrichment of Ca and S is less certain, but may be related to land use and environmental change.
Resumo:
Hyalotekite, a framework silicate of composition (Ba,Pb,K)(4)(Ca,Y)(2)Si-8(B,Be)(2) (Si,B)(2)O28F, is found in relatively high-temperature(greater than or equal to 500 degrees C) Mn skarns at Langban, Sweden, and peralkaline pegmatites at Dara-i-Pioz, Tajikistan. A new paragenesis at Dara-i-Pioz is pegmatite consisting of the Ba borosilicates leucosphenite and tienshanite, as well as caesium kupletskite, aegirine, pyrochlore, microcline and quartz. Hyalotekite has been partially replaced by barylite and danburite. This hyalotekite contains 1.29-1.78 wt.% Y2O3, equivalent to 0.172-0.238 Y pfu or 8-11% Y on the Ca site; its Pb/(Pb+Ba) ratio ranges 0.36-0.44. Electron microprobe F contents of Langban and Dara-i-Pioz hyalotekite range 1.04-1.45 wt.%, consistent with full occupancy of the F site. A new refinement of the structure factor data used in the original structural determination of a Langban hyalotekite resulted in a structural formula, (Pb1.96Ba1.86K0.18)Ca-2(B1.76Be0.24)(Si1.56B0.44)Si8O28F, consistent with chemical data and all cations with positive-definite thermal parameters, although with a slight excess of positive charge (+57.14 as opposed to the ideal +57.00). An unusual feature of the hyalotekite framework is that 4 of 28 oxygens are non-bridging; by merging these 4 oxygens into two, the framework topology of scapolite is obtained. The triclinic symmetry of hyalotekite observed at room temperature is obtained from a hypothetical tetragonal parent structure via a sequence of displacive phase transitions. Some of these transitions are associated with cation ordering, either Pb-Ba ordering in the large cation sites, or B-Be and Si-B ordering on tetrahedral sites. Others are largely displacive but affect the coordination of the large cations (Pb, Ba, K, Ca). High-resolution electron microscopy suggests that the undulatory extinction characteristic of hyalotekite is due to a fine mosaic microstructure. This suggests that at least one of these transitions occurs in nature during cooling, and that it is first order with a large volume change. A diffuse superstructure observed by electron diffraction implies the existence of a further stage of short-range cation ordering which probably involves both (Pb,K)-Ba and (BeSi,BB)-BSi.
Resumo:
Das Studium der Überlieferung und Repertoirbildung gibt über die Art der Nutzung von musikalischen Werken Aufschluss. Im iberischen Raum wurde im 16. Jh. das internationale Messenrepertoire aus Italien und Flamen ausgiebig genutzt, doch waren die kommerziellen Wege für die Beziehung wichtiger als politische Allianzen.
Resumo:
Der Katalog inventarisiert alle erhaltenen und dokumentierten Quellen zwischen 1490 und 1630 aus dem iberischen und Lateinamerikanischen Raum, die mehrstimmige Ordinariumskompositionen, Requiemskompositionen oder Einzelsätze überliefern mit Quellenbeschreibung und Inhaltsangabe.
Resumo:
[von] Majer Bałaban
Resumo:
Mojżesz Schorr
Resumo:
Availability of voltage-gated calcium channels (Cav) at the plasma membrane is paramount to maintaining the calcium homeostasis of the cell. It is proposed that the ubiquitylation/de-ubiquitylation balance regulates the density of ion channels at the cell surface. Voltage-gated calcium channels Cav1.2 have been found to be ubiquitylated under basal conditions both in vitro and in vivo. In a previous study, we have shown that Cav1.2 channels are ubiquitylated by neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4-1) ubiquitin ligases, but the identity of the counterpart de-ubiquitylating enzyme remained to be elucidated. Regarding sodium and potassium channels, it has been reported that the action of the related isoform Nedd4-2 is counteracted by the ubiquitin-specific protease (USP) 2-45. In this study, we show that USP 2-45 also de-ubiquitylates Cav channels. We co-expressed USPs and Cav1.2 channels together with the accessory subunits β2 and α2δ-1, in tsA-201 and HEK-293 mammalian cell lines. Using whole-cell current recordings and surface biotinylation assays, we show that USP2-45 specifically decreases both the amplitude of Cav currents and the amount of Cav1.2 subunits inserted at the plasma membrane. Importantly, co-expression of the α2δ-1 accessory subunit is necessary to support the effect of USP2-45. We further show that USP2-45 promotes the de-ubiquitylation of both Cav1.2 and α2δ-1 subunits. Remarkably, α2δ-1, but not Cav1.2 nor β2, co-precipitated with USP2-45. These results suggest that USP2-45 binding to α2δ-1 promotes the de-ubiquitylation of both Cav1.2 and α2δ-1 subunits, in order to regulate the expression of Cav1.2 channels at the plasma membrane.