975 resultados para Mixed integer nonlinear program
Resumo:
A new addition to the family of single-molecule magnets is reported: an Fete cage stabilized with benzoate and pyridonate ligands. Monte Carlo methods have been used to derive exchange parameters within the cage, and hence model susceptibility behavior.
Resumo:
The structures of mixed Langmuir (floating) monolayers and Langmuir-Blodgett (LB) films of a phenanthroline-porphyrin with cadmium arachidate (PhenPor + CdAr) have been investigated by synchrotron X-ray grazing incidence diffraction (GIXD) and specular X-ray reflectivity (SXR). GIXD measurements of the floating monolayers showed only one peak, arising from the CdAr domains in the films, at a scattering angle of 21.5 degrees. This is consistent with a hexagonal structure (alpha = 4.77 Angstrom). The correlation length in these domains is 250 Angstrom. GMD measurements of the LB films, however, show two sets of diffraction features: one arises from CdAr domains with a rectangular in-plane structure (alpha = 7.44 Angstrom and b = 4.90 Angstrom) and a correlation length of 85 Angstrom; the other is from porphyrin domains with an oblique in-plane structure (alpha (p) 15.2 Angstrom, b(p) = 8.86 Angstrom, and gamma (p) = 80 degrees) and a correlation length of 105 Angstrom. These dimensions are consistent with the surface pressure-area isotherm measurements and indicate that the two components are immiscible. The thickness of the bilayer is 57 Angstrom, and there is no correlation between the bilayers. Introduction of a trigger compound does not alter the structure of the films but slightly increases the bilayer thickness. The SXR measurements of the floating monolayers also support the suggested immiscibility of the two components in the films.
Resumo:
(E)-N-Hexadecyl-4-[2-(4-octadecyloxynaphthyl) ethenyl] quinolinium bromide, which has a wide-bodied chromophore and terminal n-alkyl groups, adopts a U-shape when spread at the air-water interface but a stretched conformation when compressed to ca. 35 mN m(-1). The high-pressure phase has a narrow stability range prior to collapse but may be extended from 40 to 60 mN m(-1) by co-spreading the dye in a 1 : 1 ratio with docosanoic acid. The mixed Langmuir-Blodgett (LB) film has a monolayer thickness of 4.6 +/- 0.2 nm which decreases to 2.5 +/- 0.1 nm layer(-1) in the bulk, the reduction arising from an interdigitating layer arrangement, both top and bottom. It is the first example of LB-Lego(R) and, in addition, represents the only fully interdigitating structure with non-centrosymmetrically aligned chromophores. They are tilted 38 degrees from the substrate normal. The second-harmonic intensity increases quadratically with the number of layers, i.e. as I-(N)(2 omega) = (I(1)N2)-N-2 omega, with a second-order susceptibility of chi ((2))(zzz) = 30 pm V-1 at 1064 nm for refractive indices of n(omega) = 1.55 and n(2 omega) = 1.73, d = 2.5 nm layer(-1) and phi = 38 degrees. Angle resolved X-ray photoelectron spectra (XPS) of these films provide no evidence of the bromide counterion, which suggests that it is replaced by OH 2 or HCO3-, which occur naturally in the aqueous subphase, or C21H43COO- from the co-deposited fatty acid. This probably applies to all cationic dyes deposited by the LB technique.
Resumo:
In population pharmacokinetic studies, the precision of parameter estimates is dependent on the population design. Methods based on the Fisher information matrix have been developed and extended to population studies to evaluate and optimize designs. In this paper we propose simple programming tools to evaluate population pharmacokinetic designs. This involved the development of an expression for the Fisher information matrix for nonlinear mixed-effects models, including estimation of the variance of the residual error. We implemented this expression as a generic function for two software applications: S-PLUS and MATLAB. The evaluation of population designs based on two pharmacokinetic examples from the literature is shown to illustrate the efficiency and the simplicity of this theoretic approach. Although no optimization method of the design is provided, these functions can be used to select and compare population designs among a large set of possible designs, avoiding a lot of simulations.
Resumo:
Recently there has been experimental and theoretical interest in cross-dispersion effects in rubidium vapor, which allows one beam of light to be guided by another. We present theoretical results which account for the complications created by the D line hyperfine structure of rubidium as well as the presence of the two major isotopes of rubidium. This allows the complex frequency dependence of the effects observed in our experiments to be understood and lays the foundation for future studies of nonlinear propagation.
Resumo:
Significant pain continues to be reported by many hospitalized patients despite the numerous and varied educational programs developed and implemented to improve pain management. A theoretically based Peer Intervention Program was designed from a predictive model to address nurses' beliefs, attitudes, subjective norms, self-efficacy, perceived control and intentions in the management of pain with p.r.n. (as required) narcotic analgesia. The pilot study of this program utilized a quasi-experimental pre-post test design with a patient intervention, nurse and patient intervention and control conditions consisting of 24, 18 and 19 nurses, respectively. One week after the intervention, significant differences were found between the nurse and patient condition and the two other conditions in beliefs, self-efficacy, perceived control, positive trend in attitudes, subjective norms and intentions. The most positive aspects of the program were supportive interactive discussions with peers and an awareness and understanding of beliefs and attitudes and their roles in behavior.
Resumo:
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P-1 and P-2), F-1, F-2, and both backcross generations (B-1 and B-2) derived from crossing the F-1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes.
Resumo:
The Brisbane River and Moreton Bay Study, an interdisciplinary study of Moreton Bay and its major tributaries, was initiated to address water quality issues which link sewage and diffuse loading with environmental degradation. Runoff and deposition of fine-grained sediments into Moreton Bay, followed by resuspension, have been linked with increased turbidity and significant loss of seagrass habitat. Sewage-derived nutrient enrichment, particularly nitrogen (N), has been linked to algal blooms by sewage plume maps. Blooms of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay have resulted in significant impacts on human health (e.g., contact dermatitis) and ecological health (e.g., seagrass loss), and the availability of dissolved iron from acid sulfate soil runoff has been hypothesised. The impacts of catchment activities resulting in runoff of sediments, nutrients and dissolved iron on the health of the Moreton Bay waterways are addressed. The Study, established by 6 local councils in association with two state departments in 1994, forms a regional component of a national and state program to achieve ecologically sustainable use of the waterways by protecting and enhancing their health, while maintaining economic and social development. The Study framework illustrates a unique integrated approach to water quality management whereby scientific research, community participation and the strategy development were done in parallel with each other. This collaborative effort resulted in a water quality management strategy which focuses on the integration of socioeconomic and ecological values of the waterways. This work has led to significant cost savings in infrastructure by providing a clear focus on initiatives towards achieving healthy waterways. The Study's Stage 2 initiatives form the basis for this paper.
Resumo:
The problem of designing spatially cohesive nature reserve systems that meet biodiversity objectives is formulated as a nonlinear integer programming problem. The multiobjective function minimises a combination of boundary length, area and failed representation of the biological attributes we are trying to conserve. The task is to reserve a subset of sites that best meet this objective. We use data on the distribution of habitats in the Northern Territory, Australia, to show how simulated annealing and a greedy heuristic algorithm can be used to generate good solutions to such large reserve design problems, and to compare the effectiveness of these methods.