949 resultados para Middle St. Johns River Basin
Resumo:
Relying on Merleau-Ponty's phenomenology of perception and on Mircea Eliade's works on the Sacred and the Profane, this study explores the river as a perceptual space and as the sacred Center in a cosmic vision of the world in twelve of Jean-Marie Gustave Le Clézio's fictional works, from The Interrogation (1963) to Revolutions (2003). In the first chapter, after introducing the field of study, I discuss the relation between the radical subjectivity and the evasiveness of perceiving subjects in Le Clézio's fiction. Next are some thoughts on the relation between Merleau-Ponty's and Le Clézio's ideas. The second chapter studies the river as an experience in the text, first as a topographical space, then as a sound world. The investigations move on to its water as a visual and a tactile phenomenon. Then follows the human use of the river, the (absence of) baths, and the river as a traveling space. The chapter closes with the study of the metaphorical use of the word, occurring mainly in urban space and for phenomena in the sky. The third chapter is organized around the river as the Center of the world in a religious cosmogony, where the river represents the origin of the world and of the human race. The core analysis shows how the middle of the river is a symbolic space of a new beginning. As a sacred space, the river abolishes time as the object of contemplation and as relative immobility from the point of view of a person drifting downstream. The functions of a new beginning and of abolition of time are combined in the symbolic immersions in the water. Finally, the dissertation explores other symbolical spaces, such as the unknown destination of the drift, and the river as the Center of a utopia. The chapter closes with the existential agony as a result of the elimination of the Center in the urban environment. In the final chapter, the river is compared to other watercourses : the creek, the brook and the rapids. The river is more of a spatial entity, whereas the actual water is more important in the smaller watercourses. The river is more common than the other watercourses as a topographical element in the landscape, whereas the minor watercourses invite the characters to a closer contact with their element, in immersions and in drinking their water. Finally, the work situates the rivers in a broader context of different fictional spaces in Le Clézio's text.
Resumo:
Routing of floods is essential to control the flood flow at the flood control station such that it is within the specified safe limit. In this paper, the applicability of the extended Muskingum method is examined for routing of floods for a case study of Hirakud reservoir, Mahanadi river basin, India. The inflows to the flood control station are of two types-one controllable which comprises of reservoir releases for power and spill and the other is uncontrollable which comprises of inflow from lower tributaries and intermediate catchment between the reservoir and the flood control station. Muskingum model is improved to incorporate multiple sources of inflows and single outflow to route the flood in the reach. Instead of time lag and prismoidal flow parameters, suitable coefficients for various types of inflows were derived using Linear Programming. Presently, the decisions about operation of gates of Hirakud dam are being taken once in 12 h during floods. However, four time intervals of 24, 18, 12 and 6 h are examined to test the sensitivity of the routing time interval on the computed flood flow at the flood control station. It is observed that mean relative error decreases with decrease in routing interval both for calibration and testing phase. It is concluded that the extended Muskingum method can be explored for similar reservoir configurations such as Hirakud reservoir with suitable modifications. (C) 2010 International Association of Hydro-environment Engineering and Research. Asia Pacific Division. Published by Elsevier By. All rights reserved.
Resumo:
Gottigere lake with a water spread area of about 14.98 ha is located in the Bellandur Lake catchment of the South Pennar River basin. In recent years, this lake catchment has been subjected to environmental stress mainly due to the rampant unplanned developmental activities in the catchment. The functional ability of the ecosystem is impaired due to structural changes in the ecosystem. This is evident from poor water quality, breeding of disease vectors, contamination of groundwater in the catchment, frequent flooding in the catchment due to topography alteration, decline in groundwater table, erosion in lake bed, etc. The development plans of the region (current as well as the proposed) ignore the integrated planning approaches considering all components of the ecosystem. Serious threats to the sustainability of the region due to lack of holistic approaches in aquatic resources management are land use changes (removal of vegetation cover, etc.), point and non-point sources of pollution impairing water quality, dumping of solid waste (building waste, etc.). Conservation of lake ecosystem is possible only when the physical and chemical integrity of its catchment is maintained. Alteration in the catchment either due to land use changes (leading to paved surface area from vegetation cover), alteration in topography, construction of roads in the immediate vicinity are detrimental to water yield in the catchment and hence, the sustenance of the lake. Open spaces in the form of lakes and parks aid as kidney and lung in an urban ecosystem, which maintain the health of the people residing in the locality. Identification of core buffer zones and conservation of buffer zones (500 to 1000 m from shore) is to be taken up on priority for conservation and sustainable management of Bangalore lakes. Bangalore is located over a ridge delineating four watersheds, viz. Hebbal, Koramangala, Challaghatta and Vrishabhavathi. Lakes and tanks are an integral part of natural drainage and help in retaining water during rainfall, which otherwise get drained off as flash floods. Each lake harvests rainwater from its catchment and surplus flows downstream spilling into the next lake in the chain. The topography of Bangalore has uniquely supported the creation of a large number of lakes. These lakes form chains, being a series of impoundments across streams. This emphasises the interconnectivity among Bangalore lakes, which has to be retained to prevent Bangalore from flooding or from water scarcity. The main source of replenishment of groundwater is the rainfall. The slope of the terrain allows most of the rainwater to flow as run-off. With the steep gradients available in the major valleys of Bangalore, the rainwater will flow out of the city within four to five hours. Only a small fraction of the rainwater infiltrates into the soil. The infiltration of water into the subsoil has declined with more and more buildings and paved road being constructed in the city. Thus the natural drainage of Bangalore is governed by flows from the central ridge to all lower contours and is connected with various tanks and ponds. There are no major rivers flowing in Bangalore and there is an urgent need to sustain these vital ecosystems through proper conservation and management measures. The proposed peripheral ring road connecting Hosur Road (NH 7) and Mysore Road (SH 17) at Gottigere lake falls within the buffer zone of the lake. This would alter the catchment integrity and hence water yield affecting flora, fauna and local people, and ultimately lead to the disappearance of Gottigere lake. Developmental activities in lake catchments, which has altered lake’s ecological integrity is in violation of the Indian Fisheries Act – 1857, the Indian Forest Act – 1927, Wildlife (Protection) Act – 1972, Water (Prevention and Control of Pollution) Act – 1974, Water (Prevention and Control of Pollution) Act – 1977, Forest (Conservation Act) – 1980, Environmental (Protection) Act – 1986, Wildlife (Protection) Amendment Act – 1991 and National Conservation Strategy and Policy Statement on Environment and Development – 1992. Considering 65% decline of waterbodies in Bangalore (during last three decades), decision makers should immediately take preventive measures to ensure that lake ecosystems are not affected. This report discusses the impacts due to the proposed infrastructure developmental activities in the vicinity of Gottigere tank.
Resumo:
Social, economic and political development of a region is dependent on the health and quantity of the natural resources. Integrated approaches in the management of natural resources would ensure sustainability, which demands inventorying, mapping and monitoring of resources considering all components of an ecosystem. The monitoring of hydrological and catchment landscape of river resources have a vital role in the conservation and management of aquatic resources. This paper presents a case study Venkatapura river basin in Uttara Kannada district of Karnataka State, India based on stream hydrology and landuse analyses. The results revealed variations in dissolved oxygen and free carbon dioxide according to the flow nature of the water, and increased amount of phosphates and coliform contamination in streams closer to anthropogenic activities.
Resumo:
Ground management problems are typically solved by the simulation-optimization approach where complex numerical models are used to simulate the groundwater flow and/or contamination transport. These numerical models take a lot of time to solve the management problems and hence become computationally expensive. In this study, Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) models were developed and coupled for the management of groundwater of Dore river basin in France. The Analytic Element Method (AEM) based flow model was developed and used to generate the dataset for the training and testing of the ANN model. This developed ANN-PSO model was applied to minimize the pumping cost of the wells, including cost of the pipe line. The discharge and location of the pumping wells were taken as the decision variable and the ANN-PSO model was applied to find out the optimal location of the wells. The results of the ANN-PSO model are found similar to the results obtained by AEM-PSO model. The results show that the ANN model can reduce the computational burden significantly as it is able to analyze different scenarios, and the ANN-PSO model is capable of identifying the optimal location of wells efficiently.
Resumo:
This study borrows the measures developed for the operation of water resources systems as a means of characterizing droughts in a given region. It is argued that the common approach of assessing drought using a univariate measure (severity or reliability) is inadequate as decision makers need assessment of the other facets considered here. It is proposed that the joint distribution of reliability, resilience, and vulnerability (referred to as RRV in a reservoir operation context), assessed using soil moisture data over the study region, be used to characterize droughts. Use is made of copulas to quantify the joint distribution between these variables. As reliability and resilience vary in a nonlinear but almost deterministic way, the joint probability distribution of only resilience and vulnerability is modeled. Recognizing the negative association between the two variables, a Plackett copula is used to formulate the joint distribution. The developed drought index, referred to as the drought management index (DMI), is able to differentiate the drought proneness of a given area when compared to other areas. An assessment of the sensitivity of the DMI to the length of the data segments used in evaluation indicates relative stability is achieved if the data segments are 5years or longer. The proposed approach is illustrated with reference to the Malaprabha River basin in India, using four adjoining Climate Prediction Center grid cells of soil moisture data that cover an area of approximately 12,000 km(2). (C) 2013 American Society of Civil Engineers.
Resumo:
This paper presents an approach to model the expected impacts of climate change on irrigation water demand in a reservoir command area. A statistical downscaling model and an evapotranspiration model are used with a general circulation model (GCM) output to predict the anticipated change in the monthly irrigation water requirement of a crop. Specifically, we quantify the likely changes in irrigation water demands at a location in the command area, as a response to the projected changes in precipitation and evapotranspiration at that location. Statistical downscaling with a canonical correlation analysis is carried out to develop the future scenarios of meteorological variables (rainfall, relative humidity (RH), wind speed (U-2), radiation, maximum (Tmax) and minimum (Tmin) temperatures) starting with simulations provided by a GCM for a specified emission scenario. The medium resolution Model for Interdisciplinary Research on Climate GCM is used with the A1B scenario, to assess the likely changes in irrigation demands for paddy, sugarcane, permanent garden and semidry crops over the command area of Bhadra reservoir, India. Results from the downscaling model suggest that the monthly rainfall is likely to increase in the reservoir command area. RH, Tmax and Tmin are also projected to increase with small changes in U-2. Consequently, the reference evapotranspiration, modeled by the Penman-Monteith equation, is predicted to increase. The irrigation requirements are assessed on monthly scale at nine selected locations encompassing the Bhadra reservoir command area. The irrigation requirements are projected to increase, in most cases, suggesting that the effect of projected increase in rainfall on the irrigation demands is offset by the effect due to projected increase/change in other meteorological variables (viz., Tmax and Tmin, solar radiation, RH and U-2). The irrigation demand assessment study carried out at a river basin will be useful for future irrigation management systems. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Climate change impact assessment studies involve downscaling large-scale atmospheric predictor variables (LSAPVs) simulated by general circulation models (GCMs) to site-scale meteorological variables. This article presents a least-square support vector machine (LS-SVM)-based methodology for multi-site downscaling of maximum and minimum daily temperature series. The methodology involves (1) delineation of sites in the study area into clusters based on correlation structure of predictands, (2) downscaling LSAPVs to monthly time series of predictands at a representative site identified in each of the clusters, (3) translation of the downscaled information in each cluster from the representative site to that at other sites using LS-SVM inter-site regression relationships, and (4) disaggregation of the information at each site from monthly to daily time scale using k-nearest neighbour disaggregation methodology. Effectiveness of the methodology is demonstrated by application to data pertaining to four sites in the catchment of Beas river basin, India. Simulations of Canadian coupled global climate model (CGCM3.1/T63) for four IPCC SRES scenarios namely A1B, A2, B1 and COMMIT were downscaled to future projections of the predictands in the study area. Comparison of results with those based on recently proposed multivariate multiple linear regression (MMLR) based downscaling method and multi-site multivariate statistical downscaling (MMSD) method indicate that the proposed method is promising and it can be considered as a feasible choice in statistical downscaling studies. The performance of the method in downscaling daily minimum temperature was found to be better when compared with that in downscaling daily maximum temperature. Results indicate an increase in annual average maximum and minimum temperatures at all the sites for A1B, A2 and B1 scenarios. The projected increment is high for A2 scenario, and it is followed by that for A1B, B1 and COMMIT scenarios. Projections, in general, indicated an increase in mean monthly maximum and minimum temperatures during January to February and October to December.
Resumo:
Storage of water within a river basin is often estimated by analyzing recession flow curves as it cannot be `instantly' estimated with the aid of available technologies. In this study we explicitly deal with the issue of estimation of `drainable' storage, which is equal to the area under the `complete' recession flow curve (i.e. a discharge vs. time curve where discharge continuously decreases till it approaches zero). But a major challenge in this regard is that recession curves are rarely `complete' due to short inter-storm time intervals. Therefore, it is essential to analyze and model recession flows meaningfully. We adopt the wellknown Brutsaert and Nieber analytical method that expresses time derivative of discharge (dQ/dt) as a power law function of Q : -dQ/dt = kQ(alpha). However, the problem with dQ/dt-Q analysis is that it is not suitable for late recession flows. Traditional studies often compute alpha considering early recession flows and assume that its value is constant for the whole recession event. But this approach gives unrealistic results when alpha >= 2, a common case. We address this issue here by using the recently proposed geomorphological recession flow model (GRFM) that exploits the dynamics of active drainage networks. According to the model, alpha is close to 2 for early recession flows and 0 for late recession flows. We then derive a simple expression for drainable storage in terms the power law coefficient k, obtained by considering early recession flows only, and basin area. Using 121 complete recession curves from 27 USGS basins we show that predicted drainable storage matches well with observed drainable storage, indicating that the model can also reliably estimate drainable storage for `incomplete' recession events to address many challenges related to water resources. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Precise information on streamflows is of major importance for planning and monitoring of water resources schemes related to hydro power, water supply, irrigation, flood control, and for maintaining ecosystem. Engineers encounter challenges when streamflow data are either unavailable or inadequate at target locations. To address these challenges, there have been efforts to develop methodologies that facilitate prediction of streamflow at ungauged sites. Conventionally, time intensive and data exhaustive rainfall-runoff models are used to arrive at streamflow at ungauged sites. Most recent studies show improved methods based on regionalization using Flow Duration Curves (FDCs). A FDC is a graphical representation of streamflow variability, which is a plot between streamflow values and their corresponding exceedance probabilities that are determined using a plotting position formula. It provides information on the percentage of time any specified magnitude of streamflow is equaled or exceeded. The present study assesses the effectiveness of two methods to predict streamflow at ungauged sites by application to catchments in Mahanadi river basin, India. The methods considered are (i) Regional flow duration curve method, and (ii) Area Ratio method. The first method involves (a) the development of regression relationships between percentile flows and attributes of catchments in the study area, (b) use of the relationships to construct regional FDC for the ungauged site, and (c) use of a spatial interpolation technique to decode information in FDC to construct streamflow time series for the ungauged site. Area ratio method is conventionally used to transfer streamflow related information from gauged sites to ungauged sites. Attributes that have been considered for the analysis include variables representing hydrology, climatology, topography, land-use/land- cover and soil properties corresponding to catchments in the study area. Effectiveness of the presented methods is assessed using jack knife cross-validation. Conclusions based on the study are presented and discussed. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.
Resumo:
Charlotte, De Soto, and Hardee counties are east-southeast of Tampa in west-central peninsular Florida, figure 1. In order to plan the future water-resource development of the area, information about the water resources is needed. To meet this need, the Water Resources Division of the U.S. Geological Survey, in cooperation with the Peace River Basin Board of the Southwest Florida Water Management District as part of the statewide cooperative program with the Division of Geology, Florida Board of Conservation, began a continuing hydrologic data collection program in July, 1963, as an initial step in the investigation and evaluation of the groundwater resources of Hardee and De Soto counties. A similar hydrologic data program commenced in Charlotte County in July, 1964. Previous work in Hardee and De Soto counties included a one year reconnaissance by the Division of Water Resources and Conservation, Florida Board of Conservation, which concluded in June, 1963, and resulted in a hydrologic report (Woodard, 1964). As an outgrowth of the hydrologic data program, a Map Series report portraying the chemical character of water in the Floridan aquifer in the southern Peace River basin was prepared in 1967 (Kaufman and Dion). The data contained herein constitute the basis for the Map Series report. Additional selected data, including records of wells and chemical analyses,, on the ground-water resources of the three county area are also included and are published to make the data available. (Document has 28 pages.)
Resumo:
The principal sources of surface-water supplies inBaker County are the St. Marys River and its tributaries. However, the flow of many of the small tributaries is intermittent, and without storage they are not dependable sources of supply during sustained periods of deficient rainfall. Of the six stream-gaging stations in Baker County for which complete records are available, one has been in operation for 31 years and provides a long-term record upon which to base correlative estimates for extending the short-term records at the other stations. All available streamflow data to 1957 have been summarized in graphic or tabular form. The hydrologic balance between minimum streamflows and increased evaporation losses afforded by potential shallow reservoirs provides design criteria for determining the maximum surface area of effective reservoir that can be created at a selected site within Baker County. This information has been presented in graphic and tabular form in the report. (PDF has 37 pages.)
Resumo:
The Argentine Republic is situated in the southernmost portion of the American continent, occupying over 2,785,600 km2 not including the Antarctic territory. The country ranges from subtropical areas (21º46’S) to subantarctic regions (55º03’S), extending latitudinally over about 4,000 km. It possesses significant latitudinal and altitudinal variation (33º of latitudinal range, and heights from Bajo de San Julián in Santa Cruz province at 105 m below sea level, up to Mt. Aconcagua, 6,959 m over sea level), as well as two gradients of physical variability, extending in north-south and east-west directions. Owing to these features, the country presents a wide range of climates and soil types, being one of the countries with greatest diversity of biogeographical units (Lean et al., 1990, In: Bertonatti & Corcuera, 2000). There are four main hydrographic systems: Río de la Plata basin, the Atlantic and Pacific drainages, and several endorrheic systems. Within these basins, the ichthyofaunistic assemblage is well represented, with different magnitude in accordance with the different taxonomic groupings and regions considered. From an ichthyogeographic standpoint, and according to the works of Ringuelet (1975) and Arratia et al. (1983), Argentina is included in the Brasilic and Austral Subregions. The first of these is represented by two domains: the Andean Domain, comprising the southernmost portion of Titicaca Province, and the Paranensean Domain, including part of Alto Paraná and Paranoplatensean Provinces. The Austral Subregion is represented in Argentina by the Subandean-Cuyan and Patagonian Provinces. The present survey indicates that there are about 441 fish species in Argentina, distributed throughout the country; this number represents less than 10% of the total fish species occurring in the Neotropical Region. There is a recognizable trend of faunal impoverishment, both in North-South and East-West direction, reaching its maximum expression in the provinces of Tierra del Fuego (situated at approximately 52º30’S to 55ºS, and 65ºS to 68º50’W) and San Juan (approximately 28º50’S and 67ºW to 70º45’W), which have 4 and 5 fish species respectively. In north-south direction, one of the regional indicators of this phenomenon is the Salado river basin in Buenos Aires province, which constitutes the southern distributional boundary for the majority of the paranoplatensean ichthyofauna; 12 of the families occurring in the Paraná-Plata system are absent from this pauperized paranensean ichthyofaunal assemblage. Most of the continental fish fauna of Argentina belongs to the primary division of Myers (1949), while some elements are included in the secondary division and others in an amphibiotic or ‘marine penetration’ category. This ichthyofaunistic scope encompasses a wide range of morphological, biological, ecological and ethological types (benthic and pelagic, migrating and sedentary, haematophagous or parasites, annual species, inhabitants of plains or heights, estivation-adapted, etc.) inhabiting different regions within the national territory.
Resumo:
421 p. (Bibliogr.: 375-421