958 resultados para Microarray, SNPs, forensisch, Single Nucletide Polymorphisms, Multiplex
Resumo:
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.
Resumo:
Whole-genome sequencing offers new insights into the evolution of bacterial pathogens and the etiology of bacterial disease. Staph- ylococcus aureus is a major cause of bacteria-associated mortality and invasive disease and is carried asymptomatically by 27% of adults. Eighty percent of bacteremias match the carried strain. How- ever, the role of evolutionary change in the pathogen during the progression from carriage to disease is incompletely understood. Here we use high-throughput genome sequencing to discover the genetic changes that accompany the transition from nasal carriage to fatal bloodstream infection in an individual colonized with meth- icillin-sensitive S. aureus. We found a single, cohesive population exhibiting a repertoire of 30 single-nucleotide polymorphisms and four insertion/deletion variants. Mutations accumulated at a steady rate over a 13-mo period, except for a cluster of mutations preceding the transition to disease. Although bloodstream bacteria differed by just eight mutations from the original nasally carried bacteria, half of those mutations caused truncation of proteins, including a prema- ture stop codon in an AraC-family transcriptional regulator that has been implicated in pathogenicity. Comparison with evolution in two asymptomatic carriers supported the conclusion that clusters of pro- tein-truncating mutations are highly unusual. Our results demon- strate that bacterial diversity in vivo is limited but nonetheless detectable by whole-genome sequencing, enabling the study of evolutionary dynamics within the host. Regulatory or structural changes that occur during carriage may be functionally important for pathogenesis; therefore identifying those changes is a crucial step in understanding the biological causes of invasive bacterial disease.
Resumo:
The barley β-amylase I (Bmy1) locus encodes a starch breakdown enzyme whose kinetic properties and thermostability are critical during malt production. Studies of allelic variation at the Bmy1 locus have shown that the encoded enzyme can be commonly found in at least three distinct thermostability classes and demonstrated the nucleotide sequence variations responsible for such phenotypic differences. In order to explore the extent of sequence diversity at the Bmy1 locus in cultivated European barley, 464 varieties representing a cross-section of popular varieties grown in western Europe over the past 60 years, were genotyped for three single nucleotide polymorphisms chosen to tag the four common alleles found in the collection. One of these haplotypes, which has not been explicitly recognised in the literature as a distinct allele, was found in 95% of winter varieties in the sample. When release dates of the varieties were considered, the lowest thermostability allele (Bmy1-Sd2L) appeared to decrease in abundance over time, while the highest thermostability allele (Bmy1-Sd2H) was the rarest allele at 5.4% of the sample and was virtually confined to two-row spring varieties. Pedigree analysis was used to track transmission of particular alleles over time and highlighted issues of genetic stratification of the sample.
Resumo:
Aim: The objective of this study is to assess the contribution of ADIPOQ variants to type 2 diabetes in Japanese Brazilians. Methods: We genotyped 200 patients with diabetes mellitus (100 male and 100 female, aged 55.0 years [47.5-64.0 years]) and 200 control subjects with normal glucose tolerant (NGT) (72 male and 128 female, aged 52.0 years [43.5-64.5 years]). Results: Whereas each polymorphism studied (T45G, G276T, and A349G) was not significantly associated with type 2 diabetes mellitus, the haplotype GGA was overrepresented in our diabetic population (9.3% against 3.1% in NGT individuals, P=.0003). Also, this haplotype was associated with decreased levels of adiponectin. We also identified three mutations in exon 3: I164T, R221S, and H241P, but, owing to the low frequencies of them, associations with type 2 diabetes could not be evaluated. The subjects carrying the R221S mutation had plasma adiponectin levels lower than those without the mutation (2.10 mu g/ml [1.35-2.55 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml], P=.015). Similarly, the I164T mutation carriers had mean plasma adiponectin levels lower than those noncarriers (3.73 mu g/ml [3.10-4.35 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml]), but this difference was not significant (P=.17). Conclusions: We identified in the ADIPOQ gene a risk haplotype for type 2 diabetes in the Japanese Brazilian population. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection [1-3]. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans [4-7] and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world.
Resumo:
Ureaplasma diversum infection in bulls may result in seminal vesiculitis, balanoposthitis and alterations in spermatozoids. In cows, it can cause placentitis, fetal alveolitis, abortion and the birth of weak calves. U. diversum ATCC 49782 (serogroups A), ATCC 49783 (serogroup C) and 34 field isolates were used for this study. These microorganisms were submitted to Polymerase Chain Reaction for 16S gene sequence determination using Tact High Fidelity and the products were purified and bi-directionally sequenced. Using the sequence obtained, a fragment containing four hypervariable regions was selected and nucleotide polymorphisms were identified based on their position within the 16S rRNA gene. Forty-four single nucleotide polymorphisms (SNP) were detected. The genotypic variability of the 16S rRNA gene of U. diversum isolates shows that the taxonomy classification of these organisms is likely much more complex than previously described and that 16S rRNA gene sequencing may be used to suggest an epidemiologic pattern of different origin strains. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Increased expression of matrix metalloproteinase-1 (MMP1) is associated with poor prognosis in cancers. Several single nucleotide polymorphisms (-1607GG > G, -839G > A, -755G > T, -519A > G, -422T > A, -340C > T, and 320C > T) in the MMP1 gene promoter have recently been identified. In this study, we assessed the functional effects of these polymorphisms on MMP1 gene promoter activity in cell lines of melanoma (A2058 and A375), breast cancer (MCF7 and MDA-MB-231), lung cancer (A549 and H69), and colorectal cancer (HT-29, SW-620) by comparing the promoter strengths of 10 most common haplotypes deriving from these polymorphisms. In A2058 cells, the GG-G-G-A-T-T-T and GG-G-G-A-C-T haplotypes had 2-fold higher promoter activity than the GG-G-T-A-T-T-C, GG-G-G-A-A-T-T, GG-G-G-A-T-T-C, and GG-G-G-A-A-C-T haplotypes, which in turn, had 3-fold higher promoter activity than the G-G-T-A-A-C-T, G-A-T-G-T-T-T, G-A-T-G-A-C-T, and G-A-T-G-A-T-G haplotypes. In A375 and MDA-MB-231 cells, high expression haplotypes include not only the -1607GG-bearing haplotypes but also the G-A-T-G-A-T-T haplotype containing the -1607G allele. A similar trend was detected in A549 cells. In addition, in A549 cells, the GG-G-G-A-T-T-T haplotype had > 2-fold higher promoter activity than several other 1607GG-bearing haplotypes. In MCF7 cells, the GG-G-G-A-T-T-T and G-G-T-A-A-C-T haplotypes had 1.5- to 4-fold higher promoter activity than the other haplotypes. These results suggest that the polymorphisms exert haplotype effects on the transcriptional regulation of the MMP1 gene in cancer cells, and indicate a need to examine haplotypes rather than any single polymorphism in genetic epidemiologic studies of the MMP1 gene in cancers.
Resumo:
Genetic studies of livestock populations focus on questions of domestication, within- and among-breed diversity, breed history and adaptive variation. In this review, we describe the use of different molecular markers and methods for data analysis used to address these questions. There is a clear trend towards the use of single nucleotide polymorphisms and whole-genome sequence information, the application of Bayesian or Approximate Bayesian analysis and the use of adaptive next to neutral diversity to support decisions on conservation.
Resumo:
Background: New challenges are rising in the animal protein market, and one of the main world challenges is to produce more in shorter time, with better quality and in a sustainable way. Brazil is the largest beef exporter in volume hence the factors affecting the beef meat chain are of major concern in countrýs economy. An emerging class of biotechnological approaches, the molecular markers, is bringing new perspectives to face these challenges, particularly after the publication of the first complete livestock genome (bovine), which has triggered a massive initiative to put in practice the benefits of the so called the Post-Genomic Era. Review: This article aimed at showing the directions and insights in the application of molecular markers on livestock genetic improvement and reproduction as well at organizing the progress so far, pointing some perspectives of these emerging technologies in Brazilian ruminant production context. An overview on the nature of the main molecular markers explored in ruminant production is provided, which describes the molecular bases and detection approaches available for microsatellites (STR) and single nucleotide polymorphisms (SNP). A topic is dedicated to review the history of association studies between markers and important trait variation in livestock, showing the timeline starting on quantitative trait loci (QTL) identification using STR markers and ending in high resolution SNP panels to proceed whole genome scans for phenotype/genotype association. Also the article organizes this information to reveal how QTL prospection using STR could open ground to the feasibility of marker-assisted selection and why this approach is quickly being replaced by studies involving the application of genome-wide association using SNP research in a new concept called genomic selection. Conclusion: The world's scientific community is dedicating effort and resources to apply SNP information in livestock selection through the development of high density panels for genomic association studies, connecting molecular genetic data with phenotypes of economic interest. Once generated, this information can be used to take decisions in genetic improvement programs by selecting animals with the assistance of molecular markers.
Resumo:
Objective: To evaluate if identified loci associated with normal age of menopause variation and early menopause can account for the poor response to controlled ovarian stimulation. Methods: A total of 71 patients, with age ≤ 35 years old, undergoing intracytoplasmic sperm injection were tested for three of the four newly identified genetic variants associated with normal variation in menopausal age and early menopause. Patients were divided into two groups: poor responder group (PR group, n=21) and normoresponder group (NR group, n=50). The influence of risk allele frequency on the response to controlled ovarian stimulation (COS) was evaluated. Logistic regression models were used. Results: There was no significant difference in the incidence of the genetic variants between NR and PR group. The risk allele for chromosome 19 variant (rs4806660) demonstrated a protective effect. The presence of a risk allele, either in homozygosis or in heterozygosis, was associated with an increased response to COS, resulting in an elevated number of follicles (Coef: 2.54, P= 0.041) and retrieved oocytes (Coef: 1.41, P= 0.041). Conclusions: Genetic variants rs244715, rs9379896 and rs4806660 are not risk factors for poor ovarian response. Instead, rs4806660 is associated with higher number of follicles and retrieved oocytes. It could be hypothesized that rs4806660 is associated with an increased response to gonadotrophin stimulus. © Todos os direitos reservados a SBRA - Sociedade Brasileira de Reprodução Assistida.
Resumo:
Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vectorhuman and vectorparasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles- darlingi. © 2013 The Author(s).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Desde a sua descoberta, em 1989, o vírus da hepatite C (HCV) tem sido reconhecido como a maior causa de doença hepática crônica no mundo. Considerado um problema de saúde pública mundial que envolve entre 170 a 350 milhões de pessoas infectadas. Fatores genéticos do hospedeiro têm sido implicados na persistência da infecção pelo HCV. Estudos sugerem que dois polimorfismos de nucleotídeos únicos na posição -607 C/A (rs1946518) e -137 G/C (rs187238) na região promotora do gene da IL-18 têm sido encontrados e associados com a atividade de transcrição do promotor da IL-18 e, potencialmente, de IFN-γ, sendo associados ao atraso na depuração viral e na persistência da doença. Foi realizado um estudo do tipo transversal analítico no município de Belém-PA, em 152 amostras sanguíneas de pacientes infectados pelo HCV e 188 controles não infectados. As amostras foram submetidas à RT-PCR, para detecção do RNA viral e, posteriormente, à RFLP-PCR para avaliação do polimorfismo na região promotora do gene da IL-18, nas posições -137 G/C e -607 C/A. Os resultados não revelaram diferença significante para os polimorfismos da IL-18 entre os pacientes e grupo controle. Mas revelou diferença significante para os genótipos homozigotos G/G (39,1%), na posição -137 (OR = 3.00, IC [95%] = 1.24 – 7.22, p = 0.02), e A/A (21,7%), posição -607 (OR = 3.62, IC [95%] = 1.25 – 10.45, p = 0.03), entre as mulheres, em relação aos homens (22,6% e 7,6%). Os resultados demonstraram indícios que entre as mulheres, a presença do polimorfismo homozigoto A/A (-607) atue como fator protetor contra a infecção pelo HCV, já que o genótipo A/A (-607) tem sido relacionado em alguns estudos à doença hepática leve e à depuração viral.
Resumo:
A malária é uma doença infecciosa que atinge aproximadamente 40% da população mundial em mais de 100 países e consiste em um grave problema de saúde pública. As citocinas são moléculas importantes na resposta imune contra a malária e atuam através do estímulo ou inibição da ativação, proliferação e/ ou diferenciação de células, além de regularem a secreção de anticorpos e de outras citocinas. Nesse trabalho investigamos três polimorfismos de nucleotídeo único (SNP) que podem influenciar em uma maior ou menor síntese das citocinas TNF-a e IFN-g. Em relação à malária, os polimorfismos já foram associados com a malária grave, malária cerebral e anemia grave e também com outras doenças infecciosas, auto-imunes e com o câncer. Foram incluídos no estudo oitenta e um (81) pacientes com malária por Plasmodium vivax (primeira infecção) e cento e trinta (130) indivíduos sadios, ambos da população de Belém – PA. As freqüências genotípicas e alélicas foram pesquisadas através da técnica de discriminação alélica por PCR em tempo real e os resultados foram comparados entre os dois grupos. Parâmetros clínicos foram utilizados para tentar associar uma maior gravidade das manifestações da malária e a presença dos polimorfismos entre os pacientes. As freqüências foram semelhantes entre os dois grupos estudados. O alelo TNF-238*A não mostrou relação com nenhum dos parâmetros clínicos enquanto o alelo TNF-376*A estava relacionado com menores níveis plasmáticos de TNF-a e com uma menor intensidade dos sintomas. Os pacientes portadores do alelo IFN+874*A apresentaram menor intensidade da parasitemia. Assim os resultados obtidos não indicam associação dos polimorfismos com a ocorrência da malária na população estudada, mas com alguns dos parâmetros clínicos investigados, e podem auxiliar futuros estudos para tentar esclarecer como as mutações nos genes de citocinas podem influenciar na ocorrência e na evolução clínica da malária e de outras doenças infecciosas e parasitárias.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV