873 resultados para Micro-raman
Resumo:
What are the microfoundations of dynamic capabilities that sustain competitive advantage in a highly volatile environment, such as a transition economy? We explore the detailed nature of these dynamic capabilities along with their antecedents by tracing the sequence of their development based on a longitudinal case study of an organization subject to an external context of radical transition — the Russian oil company, Yukos. Our rich qualitative data indicate two distinct types of dynamic capabilities that are pivotal for organizational transformation. Adaptation dynamic capabilities relate to routines of resource exploitation and deployment, which are supported by acquisition, internalization and dissemination of extant knowledge, as well as resource reconfiguration, divestment and integration. Innovation dynamic capabilities relate to the creation of completely new capabilities via exploration and path-creation processes, which are supported by search, experimentation and risk taking, as well as project selection, funding and implementation. Second, we find that sequencing the two types of dynamic capabilities, helped the organization both to secure short-term competitive advantage, and to create the basis for long-term competitive advantage. These dynamic capability constructs advance theoretical understanding of what dynamic capabilities are, whilst their sequencing explains how firms create, leverage and enhance them over time.
Resumo:
In this paper we describe a novel combination of Raman spectroscopy, isotope editing and X-ray scattering as a powerful approach to give detailed structural information on aromatic side chains in peptide fibrils. The orientation of the tyrosine residues in fibrils of the peptide YTIAALLSPYS with respect to the fibril axis has been determined from a combination of polarised Raman spectroscopy and X-ray diffraction measurements. The Raman intensity of selected tyrosine bands collected at different polarisation geometries is related to the values and orientation of the Raman tensor for those specific vibrations. Using published Raman tensor values we solved the relevant expressions for both of the two tyrosine residues present in this peptide. Ring deuteration in one of the two tyrosine side chains allowed for the calculation to be performed individually for both, by virtue of the isotopic shift that eliminates band overlapping. Sample disorder was taken into account by obtaining the distribution of orientations of the samples from X-ray diffraction experiments. The results provide previously unavailable details about the molecular conformation of this peptide, and demonstrate the value of this approach for the study of amyloid fibrils.
Resumo:
BACKGROUND: Under-nutrition in older adults is widespread. Oral nutritional supplement beverages (ONS) are prescribed, yet consumption by older people is often insufficient. A variety of supplement formats may improve nutrient intake. This study developed protein and micro-nutrient fortified biscuits and evaluated their sensory attributes and liking by older people. Two micro-nutrient strategies were taken, to match typical ONS and to customise to the needs of older people. RESULTS: Oat biscuits and gluten-free biscuits developed contained over 12% protein and over 460 kcal 100 g-1 . Two small (40 g) biscuits developed to match ONS provided approximately 40% of an ONS portion of micro-nutrients and 60% of macro-nutrients; however, the portion size was considered realistic whereas the average ONS portion (200 mL) is excessive. Biscuits developed to the needs of older adults provided, on average, 18% of the reference nutrient intake of targeted micro-nutrients. Sensory characteristics were similar between biscuits with and without micro-nutrient fortification, leading to no differences in liking. Fortified oat biscuits were less liked than commercial oat biscuits, partly attributed to flavour imparted by whey protein fortification. CONCLUSION: Macro- and micro-nutrient fortification of biscuits could provide an alternative fortified snack to help alleviate malnutrition in older adults.
Resumo:
Background Emerging cellular markers of endothelial damage and repair include endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs) respectively. Effects of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and influence of genetic background on these markers are not known. Objective This study investigated the effects of fish oil supplementation on both classical and novel markers of endothelial function in subjects prospectively genotyped for the Asp298 eNOS polymorphism and at moderate risk of CVD. Design 84 subjects with moderate risk of CVD (n=40 GG and n=44 GT/TT) completed a randomized, double-blind, placebo-controlled, 8-week cross-over trial of fish oil supplementation providing 1.5 g/d LC n-3 PUFA. Effects of genotype and fish oil supplementation on the blood lipid profile, inflammatory markers, vascular function (EndoPAT) and numbers of circulating EPCs and EMP (flow cytometry) were assessed. Results There was no significant effect of fish oil supplementation on blood pressure, plasma lipids or plasma glucose, although there was a trend (P = 0.069) towards a decrease in plasma TG concentration after FO supplementation compared to placebo. GT/TT subjects tended to have higher levels of total cholesterol and LDL-cholesterol, but vascular function was not affected by either treatment or eNOS genotype. Biochemical markers of endothelial function were also unaffected by treatment and eNOS genotype. In contrast, there was a significant effect of fish oil supplementation on cellular markers of endothelial function. Fish oil supplementation increased numbers of EPCs and reduced numbers of EMPs relative to the placebo, potentially favouring maintenance of endothelial integrity. There was no influence of genotype for any of the cellular markers of endothelial function, indicating that the effects of fish oil supplementation were independent of eNOS genotype. Conclusions Emerging cellular markers of endothelial damage, integrity and repair appear to be sensitive to potentially beneficial modification by dietary n-3 PUFA.
Resumo:
Fluvial redeposition of stone artifacts is a major complicating factor in the interpretation of Lower Palaeolithic open-air archaeological sites. However, the microscopic examination of lithic surfaces may provide valuable background information on the transport history of artifacts, particularly in low energy settings. Replica flint artifacts were therefore abraded in an annular flume and examined with a scanning electron microscope. Results showed that abrasion time, sediment size, and artifact transport mode were very sensitive predictors of microscopic surface abrasion, ridge width, and edge damage (p < 0.000). These results suggest that patterns of micro-abrasion of stone artifacts may enhance understanding of archaeological assemblage formation in fluvial contexts
Resumo:
Nickel cyanide is a layered material showing markedly anisotropic behaviour. High-pressure neutron diffraction measurements show that at pressures up to 20.1 kbar, compressibility is much higher in the direction perpendicular to the layers, c, than in the plane of the strongly chemically bonded metal-cyanide sheets. Detailed examination of the behaviour of the tetragonal lattice parameters, a and c, as a function of pressure reveal regions in which large changes in slope occur, for example, in c(P) at 1 kbar. The experimental pressure dependence of the volume data is fitted to a bulk modulus, B0, of 1050 (20) kbar over the pressure range 0–1 kbar, and to 124 (2) kbar over the range 1–20.1 kbar. Raman spectroscopy measurements yield additional information on how the structure and bonding in the Ni(CN)2 layers change with pressure and show that a phase change occurs at about 1 kbar. The new high-pressure phase, (Phase PII), has ordered cyanide groups with sheets of D4h symmetry containing Ni(CN)4 and Ni(NC)4 groups. The Raman spectrum of phase PII closely resembles that of the related layered compound, Cu1/2Ni1/2(CN)2, which has previously been shown to contain ordered C≡N groups. The phase change, PI to PII, is also observed in inelastic neutron scattering studies which show significant changes occurring in the phonon spectra as the pressure is raised from 0.3 to 1.5 kbar. These changes reflect the large reduction in the interlayer spacing which occurs as Phase PI transforms to Phase PII and the consequent increase in difficulty for out-of-plane atomic motions. Unlike other cyanide materials e.g. Zn(CN)2 and Ag3Co(CN)6, which show an amorphization and/or a decomposition at much lower pressures (~100 kbar), Ni(CN)2 can be recovered after pressurising to 200 kbar, albeit in a more ordered form.
Resumo:
Alfred Chandler, the celebrated business historian, provided detailed descriptions of the reasons for failed human commitments and the managerial tools needed to prevent/remediate such failings in the context of large business firms. Chandler's historical narrative identifies three distinct “faces” of bounded reliability—opportunism, benevolent preference reversal, and identity-based discordance—as the main drivers of commitment failure. Adopting bounded reliability (BRel) as a micro-foundation in management studies will raise the quality and relevance of scholarly recommendations to improve managerial decision making and action, because analysis of BRel challenges closely mirrors the real-world problems facing practicing managers.
Resumo:
The current trend toward minimal-invasive dentistry has introduced innovative techniques for cavity preparation. Chemical vapor deposition (CVD) and laser-irradiation technology have been employed as an alternative to the common use of regular burs in high-speed turbines. Objectives. The purpose of this study was to assess the influence of alternative techniques for cavity preparation on the bonding effectiveness of different adhesives to dentin, and to evaluate the morphological characteristics of dentin prepared with those techniques. Methods. One etch&rinse adhesive (OptiBond FL, Kerr) and three self-etch systems (Adper Prompt L-Pop, 3M ESPE; Clearfil SE Bond, Kuraray; Clearfil S3 Bond, Kuraray) were applied on dentin prepared with a regular bur in a turbine, with a CVD bur in a turbine, with a CVD tip in ultrasound and with an ErCr:YSGG laser. The micro-tensile bond strength (mu TBS) was determined after storage in water for 24 h at 37 degrees C, and morphological evaluation was performed by means of field -emission -gun scanning electron microscopy (Feg-SEM). Results. Feg-SEM evaluation revealed different morphological features on the dentin surface after the usage of both the conventional and alternative techniques for cavity preparation, more specifically regarding smear-layer thickness and surface roughness. CVD bur-cut, CVD ultra-sonoabraded and laser-irradiated dentin resulted in lower mu TBSs than conventionally bur-cut dentin, irrespective of the adhesive employed. Significance. The techniques, such as CVD diamond-bur cutting, CVD diamond ultra-sonoabrasion and laser-irradiation, used for cavity preparation may affect the bonding effectiveness of adhesives to dentin, irrespective of their acidity or approach. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Surazomus uarini n. sp. is described and illustrated based on specimens collected by beating on understory vegetation of Amazonian ""terra firme"" upland rain forests. A new cuticular structure, possibly a gland opening, is described on the female tarsus I and terminal flagellum. A putatively homologous structure is reported from the same body parts in all Undescribed species of Rowlandius Reddell and Cokendolpher 1995; Stenochrus portoricensis Chamberlin 1922; Mastigoproctus maximus (Tarnani 1889), and Thelyphonellus amazonicus (Butler 1872); suggesting it new synapomorphy for the clade Uropygi (i.e., Schizomida + Thelyphonida).
Resumo:
By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO(2)-Y(2)O(3) solid solutions, the presence at room temperature of three different phases depending on Y(2)O(3) content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO(2)-Y(2)O(3) solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro)crystals. The compositional boundaries between both tetragonal forms and between tetragonal and cubic phases were also determined. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Raman activities and degrees of depolarization are reported for 14 complexes involving methanol, ethanol and water using the MP2/aug-cc-pVDZ model. For ethanol both trans and gauche isomers are considered. The red-shifts of the OH stretching and the blue shifts of the bending tau(CO-OH) mode were analyzed for the proton-donor molecules upon hydrogen bond. The shift of the nu(CO) stretching mode of the alcohol molecules are also analyzed and found to be specific giving characterization of the amphoteric relation, being positive for the proton-acceptor and negative for the proton-donor molecule. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Two-photon polymerization is a powerful tool for fabricating three-dimensional micro/nano structures for applications ranging from nanophotonics to biology. To tailor such structure for specific purposes it is often important to dope them. In this paper we report on the fabrication of structures, with nanometric surface features (resolution of approximately 700 nm), using two-photon polymerization of an acrylic resin doped with the biocompatible polymer chitosan using a guest-host scheme. The fluorescence background in the Raman spectrum indicates the presence of chitosan throughout the structure. Mechanical characterization reveals that chitosan does not affect the mechanical properties of the host acrylic resin and, consequently, the structures exhibit excellent integrity. The approach presented in this work can be used in the fabrication of micro- and nanostructures containing biopolymers for biomedical applications.
Resumo:
This review deals with surface-enhancved Raman scattering (SERS) employing Langmuir-Blodgett (LB) films, which serve as model systems for developing theoretical and experimental studies to elucidate the SERS effect. In addition, LB films have be used as integral parts of molecular architectures for SERS-active substrates. On the other hand, SERS and surface-enhaced resonant Raman scattering (SERRS) have allowed various properties of LB films to be investigated, especially those associated with molecular-level interactions. In the paper, emphasis is placed on single molecule detection (SMD), where the target molecule is diluted on an LB matrix of spectral silent material (low Raman cross section). The perspectives and challenges for combining SERS and LB films are also discussed.