991 resultados para Micro Tomography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser micro machining is fast gaining popularity as a method of fabricating micro scale structures. Lasers have been utilised for micro structuring of metals, ceramics and glass composites and with advances in material science, new materials are being developed for micro/nano products used in medical, optical, and chemical industries. Due to its favourable strength to weight ratio and extreme resistance to chemical attack, glassy carbon is a new material that offers many unique properties for micro devices. The laser machining of SIGRADUR® G grade glassy carbon was characterised using a 1065 nm wavelength Ytterbium doped pulsed fiber laser. The laser system has a selection of 25 preset waveforms with optimised peak powers for different pulsing frequencies. The optics provide spot diameter of 40 μm at the focus. The effect of fluence, transverse overlap and pulsing frequency (as waveform) on glassy carbon was investigated. Depth of removal and surface roughness were measured as machining quality indicators. The damage threshold fluence was determined to be 0.29 J/cm2 using a pulsing frequency of 250 kHz and a pulse width of 18 ns (waveform 3). Ablation rates of 17 < V < 300 μm3/pulse were observed within a fluence range of 0.98 < F < 2.98 J/cm2. For the same fluence variation, 0.6 μm to 6.8 μm deep trenches were machined. Trench widths varied from 29 μm at lower fluence to 47 μm at the higher fluence. Square pockets, 1 mm wide, were machined to understand the surface machining or milling. The depth of removal using both waveform 3 and 5 showed positive correlation with fluence, with waveform 5 causing more removal than waveform 3 for the same fluence. Machined depths varied from less than 1 μm to nearly 40 μm. For transverse overlap variation using waveform 3, the best surface finish with Rz = 1.1 μm was obtained for fluence 0.792 J/cm2 for transverse overlap of 1 μm, 6 μm, and 9 μm at machined depths of 22.9 μm, 6.6 μm, and 4.6 μm respectively. For fluence of 1.426 J/cm2, the best surface finish with Rz = 1.2 μm was obtained for transverse overlap of 6 μm, and 9 μm at machined depths of 12.46 μm, and 8.6 μm respectively. The experimental data was compiled as machining charts and utilised for fabricating a micro-embossing glassy carbon master toolsets as a capability demonstration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An X-ray imaging technique is used to probe the stability of 3-dimensional granular packs in a slowly rotating drum. Well before the surface reaches the avalanche angle, we observe intermittent plastic events associated with collective rearrangements of the grains located in the vicinity of the free surface. The energy released by these discrete events grows as the system approaches the avalanche threshold. By testing various preparation methods, we show that the pre-avalanche dynamics is not solely controlled by the difference between the free surface inclination and the avalanche angle. As a consequence, the measure of the pre-avalanche dynamics is unlikely to serve as a tool for predicting macroscopic avalanches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional structure of very large samples of monodisperse bead packs is studied by means of X-Ray Computed Tomography. We retrieve the coordinatesofeach bead inthe pack and wecalculate the average coordination number by using the tomographic images to single out the neighbors in contact. The results are compared with the average coordination number obtained in Aste et al. (2005) by using a deconvolution technique. We show that the coordination number increases with the packing fraction, varying between 6.9 and 8.2 for packing fractions between 0.59 and 0.64. © 2005 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a micro-electro-mechanical tilt sensor based on resonant sensing principles. The tilt sensor measures orientation by sensing the component of gravitational acceleration along a specified input axis. Design aspects of the tilt sensor are first introduced and a design trade-off between sensitivity, resolution and robustness is addressed. A prototype sensor is microfabricated in a foundry process. The sensor is characterized to validate predictive analytical and FEA models of performance. The prototype is tested over tilt angles ranging over ±90 degrees and the linearity of the sensor is found to be better than 1.4% over the tilt angle range of ±20°. The noise-limited resolution of the sensor is found to be approximately 0.00026 degrees for an integration time of 0.6 seconds. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in the development of computer vision, miniature Micro-Electro-Mechanical Systems (MEMS) and Wireless Sensor Network (WSN) offer intriguing possibilities that can radically alter the paradigms underlying existing methods of condition assessment and monitoring of ageing civil engineering infrastructure. This paper describes some of the outcomes of the European Science Foundation project "Micro-Measurement and Monitoring System for Ageing Underground Infrastructures (Underground M3)". The main aim of the project was to develop a system that uses a tiered approach to monitor the degree and rate of tunnel deterioration. The system comprises of (1) Tier 1: Micro-detection using advances in computer vision and (2) Tier 2: Micro-monitoring and communication using advances in MEMS and WSN. These potentially low-cost technologies will be able to reduce costs associated with end-of-life structures, which is essential to the viability of rehabilitation, repair and reuse. The paper describes the actual deployment and testing of these innovative monitoring tools in tunnels of London Underground, Prague Metro and Barcelona Metro. © 2012 Taylor & Francis Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction phenomena of nanosecond Q-switched diode-pumped solid state (DPSS) laser using 355nm radiation with 0.2mm thick 316L stainless steel foil was investigated at incident laser fluence range of 19 - 82Jcm-2. The characterization study was performed with and without the use of assist gas by utilizing micro supersonic minimum length nozzles (MLN), specifically designed for air at inlet chamber pressure of 8bar. MLN ranged in throat diameters of 200μm, 300μm, and 500μm respectively. Average etch rate per pulse under the influence of three micro supersonic impinging jets, for both oxygen and air showed the average etch rate was reduced when high-speed gas jets were utilized, compared to that without any gas jets, but significant variation was noticed between different jet sizes. Highest etch rate and quality was achieved with the smallest diameter nozzle, suggesting that micro nozzles can produce a viable process route for micro laser cutting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of bleed and vortex generators in supersonic ow has been conducted. Methods were developed to analyze and directly compare the two systems' effects on turbulent boundary layers to better understand their potential to mitigate ow separation. LDA was used to measure two components of velocity in the boundary-layer for three cases|baseline, with bleed, or with a VG|at Mach numbers of 1.3, 1.5 and 1.8. The bleed system was comprised of a series of 2mm diameter normal holes operated at different suction rates, removing up to 10% of the incoming boundary layer. Three VG shapes were tested only at Mach 1.5 and 1.8. Measurements of the evolution of Hi and Cf downstream of each device indicate that Hi is not an appropriate parameter to gauge the effectiveness of vortex generators due to boundary layer wake distortion. The skin friction coeficient Cf may be a more appropriate measure. Similar increases in Cf were generated by VGs and bleed. The recovery to baseline conditions downstream of bleed was sensitive to Mach number, and more investigation of that effect will be required. Copyright © 2012 by University of Cambridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.