967 resultados para Mg-doped ZnO quantum dots
Resumo:
It has been observed experimentally [H.R. Xia, C.Y. Ye, and S.Y. Zhu, Phys. Rev. Lett. 77, 1032 (1996)] that quantum interference between two molecular transitions can lead to a suppression or enhancement of spontaneous emission. This is manifest in the fluorescent intensity as a function of the detuning of the driving field from the two-photon resonance condition. Here we present a theory that explains the observed variation of the number of peaks with the mutual polarization of the molecular transition dipole moments. Using master equation techniques we calculate analytically as well as numerically the steady-state fluorescence, and find that the number of peaks depends on the excitation process. If the molecule is driven to the upper levels by a two-photon process, the fluorescent intensity consists of two peaks regardless of the mutual polarization of the transition dipole moments. Lf the excitation process is composed of both a two-step, one-photon process and a one-step, two-photon process, then there are two peaks on transitions with parallel dipole moments and three peaks on transitions with antiparallel dipole moments. This latter case is in excellent agreement with the experiment.
Resumo:
The solution treatment stage of the T6 heat-treatment of Al-7%Si-Mg foundry alloys influences microstructural features such as Mg2Si dissolution, and eutectic silicon spheroidisation and coarsening. Microstructural and microanalytical studies have been conducted across a range of Sr-modified Al-7%Si alloys, with an Fe content of 0.12% and Mg contents ranging from 0.3-0.7wt%. Qualitative and quantitative metallography have shown that, in addition to the above changes, solution treatment also results in changes to the relative proportions of iron-containing intermetallic particles and that these changes are composition-dependent. While solution treatment causes a substantial transformation of pi phase to beta phase in low Mg alloys (0.3-0.4%), this change is not readily apparent at higher Mg levels (0.6-0.7%). The pi to beta transformation is accompanied by a release of Mg into the aluminum matrix over and above that which arises from the rapid dissolution of Mg2Si. Since the level of matrix Mg retained after quenching controls an alloy's subsequent precipitation hardening response, a proper understanding of this phase transformation is crucial if tensile properties are to be maximised.
Resumo:
Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics (SED), a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system's nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory for continuous variables.
Resumo:
Cold rubidium atoms are subjected to an amplitude-modulated far-detuned standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics which can be useful in many atom optics applications as they can be utilized as means for phase space state preparation. We explain the occurrence of distinct peaks in the atomic momentum distribution, analyse them in detail and give evidence for the importance of the system for quantum chaos and decoherence studies.
Resumo:
I shall discuss the quantum and classical dynamics of a class of nonlinear Hamiltonian systems. The discussion will be restricted to systems with one degree of freedom. Such systems cannot exhibit chaos, unless the Hamiltonians are time dependent. Thus we shall consider systems with a potential function that has a higher than quadratic dependence on the position and, furthermore, we shall allow the potential function to be a periodic function of time. This is the simplest class of Hamiltonian system that can exhibit chaotic dynamics. I shall show how such systems can be realized in atom optics, where very cord atoms interact with optical dipole potentials of a far-off resonance laser. Such systems are ideal for quantum chaos studies as (i) the energy of the atom is small and action scales are of the order of Planck's constant, (ii) the systems are almost perfectly isolated from the decohering effects of the environment and (iii) optical methods enable exquisite time dependent control of the mechanical potentials seen by the atoms.
Resumo:
In quantum measurement theory it is necessary to show how a, quantum source conditions a classical stochastic record of measured results. We discuss mesoscopic conductance using quantum stochastic calculus to elucidate the quantum nature of the measurement taking place in these systems. To illustrate the method we derive the current fluctuations in a two terminal mesoscopic circuit with two tunnel barriers containing a single quasi bound state on the well. The method enables us to focus on either the incoming/ outgoing Fermi fields in the leads, or on the irreversible dynamics of the well state itself. We show an equivalence between the approach of Buttiker and the Fermi quantum stochastic calculus for mesoscopic systems.
Resumo:
Two integrable quantum spin ladder systems will be introduced associated with the fundamental su(2 \2) solution of the Yang-Baxter equation. The first model is a generalized quantum Ising system with Ising rung interactions. In the second model the addition of extra interactions allows us to impose Heisenberg rung interactions without violating integrability. The existence of a Bethe ansatz solution for both models allows us to investigate the elementary excitations for antiferromagnetic rung couplings. We find that the first model does not show a gap whilst in the second case there is a gap for all positive values of the rung coupling.
Resumo:
Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr3+-doped ZBLAN reveals that much of the broad resonance extending from g(eff) = 5.1 to g(eff) = 1.97, characteristic of X-band continuous wave EPR of Cr3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra.
Resumo:
Postmenopausal Caucasian women aged less than 80 years (n = 99) with one or more atraumatic vertebral fracture and no hip fractures, were treated by cyclical administration of enteric coated sodium fluoride (NaF) or no NaF for 27 months, with precautions to prevent excessive stimulation of bone turnover. In the first study 65 women, unexposed to estrogen (-E study), age 70.8 +/- 0.8 years (mean SEM) were all treated with calcium (Ca) 1.0-1.2 g daily and ergocalciferol (D) 0.25 mg per 25 kg once weekly and were randomly assigned to cyclical NaF (6 months on. 3 months off, initial dose 60 mg/day; group F CaD, n = 34) or no NaF (group CaD, n = 3 1). In the second study 34 patients. age 65.5 +/- 1.2 years, on hormone replacement therapy (E) at baseline, had this standardized, and were all treated with Ca and D and similarly randomized (FE CaD, n = 17, E CaD, n = 17) (+E study). The patients were stratified according to E status and subsequently assigned randomly to NaF. Seventy-five patients completed the trial. Both groups treated with NaF showed an increase in lumbar spinal density (by DXA) above baseline by 27 months: FE CaD + 16.2% and F CaD +9.3% (both p = 0.0001). In neither group CaD nor E CaD did lumbar spinal density increase. Peripheral bone loss occurred at most sites in the F CaD group at 27 months: tibia/fibula shaft -7.3% (p = 0.005); femoral shaft -7.1% (p = 0.004); distal forearm -4.0% (p = 0.004); total hip -4.1% (p = 0. 003); and femoral neck -3.5% (p = 0.006). No significant loss occurred in group FE CaD. Differences between the two NaF groups were greatest at the total hip at 27 months but were not significant [p < 0.05; in view of the multiple bone mineral density (BMD) sites, an alpha of 0.01 was employed to denote significance in BMD changes throughout this paper]. Using Cox's proportional hazards model, in the -E study there were significantly more patients with first fresh vertebral fractures in those treated with NaF than in those not so treated (RR = 24.2, p = 0.008, 95% CI 2.3-255). Patients developing first fresh fractures in the first 9 months were markedly different between groups: -23% of F CaD, 0 of CaD, 29% of FE CaD and 0 of E CaD. The incidence of incomplete (stress) fractures was similar in the two NaF-treated groups. Complete nonvertebral fractures did not occur in the two +E groups, there were no differences between groups F CaD and CaD. Baseline BMD (spine and femoral neck) was related to incident vertebral fractures in the control groups (no NaF), but not in the two NaF groups. Our results and a literature review indicate that fluoride salts. if used, should be at low dosage, with pretreatment and co-treatment with a bone resorption inhibitor.
Resumo:
The pseudoternary sections FeO-ZnO-(CaO + SiO2) with CaO/SiO2 weight ratios of 0.33, 0.93, and 1.2 in equilibrium with metallic iron have been experimentally investigated in the temperature range from 1000 degreesC to 1300 degreesC (1273 to 1573 K). The liquidus surfaces in these pseudoternary sections have been experimentally determined in the composition range from 0 to 33 wt pct ZnO and 30 to 70 wt pct (CaO + SiO2). The sections contain primary-phase fields of wustite (FexZn1-xO1+y), zincite (ZnzFe1-zO), fayalite (Fu(w)Zn(2-w)SiO(4)), melilite (Ca2ZnuFe1-uSi2O7), willemite (ZnvFe2-vSiO4), dicalcium silicate (Ca2SiO4), pseudowollastonite and wollastonite (CaSiO3), and tridymite (SiO2). The phase equilibria involving the liquid phase and the solid solutions-have also been measured.
Resumo:
We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including: quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.
Resumo:
We discuss quantum error correction for errors that occur at random times as described by, a conditional Poisson process. We shoo, how a class of such errors, detected spontaneous emission, can be corrected by continuous closed loop, feedback.