944 resultados para Metallic Corrugated Horns


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-sectorial regime of protection including international treaties, conservation and security measures, demand reduction campaigns and quasi-military interventions has been established to protect rhinos. Despite these efforts, the poaching of rhinos and trafficking of rhino horn continue unabated. This dissertation asks why the illegal market in rhinoceros horn is so resilient in spite of the myriad measures employed to disrupt it. A theoretical approach grounded in the sociology of markets is applied to explain the structure and functioning of the illegal market. The project follows flows of rhino horn from the source in southern Africa to illegal markets in Southeast Asia. The multi-sited ethnography included participant observations, interviews and focus groups with 416 informants during fourteen months of fieldwork. The sample comprised of, amongst others, convicted and active rhino poachers, smugglers and kingpins, private rhino breeders and hunting outfitters, African and Asian law enforcement officials, as well as affected local communities and Asian consumers. Court files, CITES trade data, archival materials, newspaper reports and social media posts were also analysed to supplement findings and to verify and triangulate data from interviews, focus groups and observations. Central to the analysis is the concept of “contested illegality”, a legitimization mechanism employed by market participants along the different segments of the horn supply chain. These actors' implicit or explicit contestation of the state-sponsored label of illegality serves as a legitimising and enabling mechanism, facilitating participation in gray or illegal markets for rhino horn. The research identified fluid interfaces between legal, illegal and gray markets, with recurring actors who have access to transnational trade structures, and who also possess market and product knowledge, as well as information about the regulatory regime and its loopholes. It is against the background of colonial, apartheid and neoliberal exploitation and marginalization of local communities that a second argument is introduced: the path dependency of conservation paradigms. Underpinning rhino conservation and regulation are archaic and elitist conservation regimes that discount the potential for harmonious relationships between local communities and wildlife. The increasing militarization of anti-poaching measures and green land grabs are exacerbating the rhino problem by alienating communities further from conservation areas and wild animals. The third argument looks at how actors deal with coordination problems in transnational illegal markets. Resolving the coordination problems of cooperation, value and competition are considered essential to the operation of formal markets. It is argued that the problem of security provides an additional and crucial obstacle to actors transacting in markets. The systematic analysis of flows between the researched sites of production, distribution and consumption of rhino horn shows that the social embeddedness of actors facilitates the flourishing of illegal markets in ways that escape an effective enforcement of CITES regulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the relationship between heterogeneous nucleate boiling surfaces and deposition of suspended metallic colloidal particles, popularly known as crud or corrosion products in process industries, on those heterogeneous sites is investigated. Various researchers have reported that hematite is a major constituent of crud which makes it the primary material of interest; however the models developed in this work are irrespective of material choice. Qualitative hypotheses on the deposition process under boiling as proposed by previous researchers have been tested, which fail to provide explanations for several physical mechanisms observed and analyzed. In this study a quantitative model of deposition rate has been developed on the basis of bubble dynamics and colloid-surface interaction potential. Boiling from a heating surface aids in aggregation of the metallic particulates viz. nano-particles, crud particulate, etc. suspended in a liquid, which helps in transporting them to heating surfaces. Consequently, clusters of particles deposit onto the heating surfaces due to various interactive forces, resulting in formation of porous or impervious layers. The deposit layer grows or recedes depending upon variations in interparticle and surface forces, fluid shear, fluid chemistry, etc. This deposit layer in turn affects the rate of bubble generation, formation of porous chimneys, critical heat flux (CHF) of surfaces, activation and deactivation of nucleation sites on the heating surfaces. Several problems are posed due to the effect of boiling on colloidal deposition, which range from research initiatives involving nano-fluids as a heat transfer medium to industrial applications such as light water nuclear reactors. In this study, it is attempted to integrate colloid and surface science with vapor bubble dynamics, boiling heat transfer and evaporation rate. Pool boiling experiments with dilute metallic colloids have been conducted to investigate several parameters impacting the system. The experimental data available in the literature is obtained by flow experiments, which do not help in correlating boiling mechanism with the deposition amount or structure. With the help of experimental evidences and analysis, previously proposed hypothesis for particle transport to the contact line due to hydrophobicity has been challenged. The experimental observations suggest that deposition occurs around the bubble surface contact line and extends underneath area of the bubble microlayer as well. During the evaporation the concentration gradient of a non-volatile species is created, which induces osmotic pressure. The osmotic pressure developed inside the microlayer draws more particles inside the microlayer region or towards contact line. The colloidal escape time is slower than the evaporation time, which leads to the aggregation of particles in the evaporating micro-layer. These aggregated particles deposit onto or are removed from the heating surface, depending upon their total interaction potential. Interaction potential has been computed with the help of surface charge and van der Waals potential for the materials in aqueous solutions. Based upon the interaction-force boundary layer thickness, which is governed by debye radius (or ionic concentration and pH), a simplified quantitative model for the attachment kinetics is proposed. This attachment kinetics model gives reasonable results in predicting attachment rate against data reported by previous researchers. The attachment kinetics study has been done for different pH levels and particle sizes for hematite particles. Quantification of colloidal transport under boiling scenarios is done with the help of overall average evaporation rates because generally waiting times for bubbles at the same position is much larger than growth times. In other words, from a larger measurable scale perspective, frequency of bubbles dictates the rate of collection of particles rather than evaporation rate during micro-layer evaporation of one bubble. The combination of attachment kinetics and colloidal transport kinetics has been used to make a consolidated model for prediction of the amount of deposition and is validated with the help of high fidelity experimental data. In an attempt to understand and explain boiling characteristics, high speed visualization of bubble dynamics from a single artificial large cavity and multiple naturally occurring cavities is conducted. A bubble growth and departure dynamics model is developed for artificial active sites and is validated with the experimental data. The variation of bubble departure diameter with wall temperature is analyzed with experimental results and shows coherence with earlier studies. However, deposit traces after boiling experiments show that bubble contact diameter is essential to predict bubble departure dynamics, which has been ignored previously by various researchers. The relationship between porosity of colloid deposits and bubbles under the influence of Jakob number, sub-cooling and particle size has been developed. This also can be further utilized in variational wettability of the surface. Designing porous surfaces can having vast range of applications varying from high wettability, such as high critical heat flux boilers, to low wettability, such as efficient condensers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main task is to analyze the state of the art of grating couplers production and low-cost polymer substrates. Then to provide a recommendation of a new or adapted process for the production of metallic gratings on polymer sheets, based on a Failure Mode and Effect Analysis (FMEA). In order to achieve that, this thesis is divided into four chapters. After the first introductory chapter, the second section provides details about the state-of-the-art in optical technology platforms with focus on polymers and their main features for the aimed application, such as flexibility, low cost and roll to roll compatibility. It defines then the diffraction gratings and their specifications and closes with the explanation of adhesion mechanisms of inorganic materials on polymer substrates. The third chapter discusses processing of grating couplers. It introduces the basic fabrication methods and details a selection of current fabrication schemes found in literature with an assessment of their potential use for the desired application. The last chapter is a FMEA analysis of the retained fabrication process, called Flip and Fuse, in order to check its capability to realize the grating structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study the Zeeman splitting effects in the parallel magnetic field versus temperature phase diagram of two-dimensional superconductors with one graphene-like band and the orbital effects of perpendicular magnetic fields in isotropic two-dimensional semi-metallic superconductors. We show that when parallel magnetic fields are applied to graphene and as the intraband interaction decreases to a critical value, the width of the metastability region present in the phase diagram decreases, vanishing completely at that critical value. In the case of two-band superconductors with one graphene-like band, a new critical interaction, associated primarily with the graphene-like band, is required in order for a second metastability region to be present in the phase diagram. For intermediate values of this interaction, a low-temperature first-order transition line bifurcates at an intermediate temperature into a first-order transition between superconducting phases and a second-order transition line between the normal and the superconducting states. In our study on the upper critical fields in generic semi-metallic superconductors, we find that the pair propagator decays faster than that of a superconductor with a metallic band. As result, the zero field band gap equation does not have solution for weak intraband interactions, meaning that there is a critical intraband interaction value in order for a superconducting phase to be present in semi-metallic superconductors. Finally, we show that the out-of-plane critical magnetic field versus temperature phase diagram displays a positive curvature, contrasting with the parabolic-like behaviour typical of metallic superconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the discovery of bulk metallic glasses with exceptional properties has generated much interest. One of their most intriguing features is their capacity for viscous flow above the glass transition temperature. This characteristic allows metallic glasses to be formed like plastics at modest temperatures. However, crystallization of supercooled metallic liquids in the best bulk metallic glass-formers is much more rapid than in most polymers and silicate glass-forming liquids. The short times to crystallization impairs experimentation on and processing of supercooled glass-forming metallic liquids. A technique to rapidly and uniformly heat metallic glasses at rates of 105 to 106 kelvin per second is presented. A capacitive discharge is used to ohmically heat metallic glasses to temperatures in the super cooled liquid region in millisecond time-scales. By heating samples rapidly, the most time-consuming step in experiments on supercooled metallic liquids is reduced orders of magnitude in length. This allows for experimentation on and processing of metallic liquids in temperature ranges that were previously inaccessible because of crystallization.

A variety of forming techniques, including injection molding and forging, were coupled with capacitive discharge heating to produce near net-shaped metallic glass parts. In addition, a new forming technique, which combines a magnetic field with the heating current to produce a forming force, was developed. Viscosities were measured in previously inaccessible temperature ranges using parallel plate rheometry combined with capacitive discharge heating. Lastly, a rapid pulse calorimeter was developed with this technique to investigate the thermophysical behavior of metallic glasses at these rapid heating rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatially accelerating beams are non-diffracting beams whose intensity is localized along curvilinear trajectories, also incomplete circular trajectories, before diffraction broadening governs their propagation. In this paper we report on numerical simulations showing the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced near the focal region by a diffractive optical element that consists of a non-planar subwavelength grating enabling a Bessel signature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present PhD thesis is to investigate the properties of innovative nano- materials with respect to the conversion of renewable energies to electrical and chemical energy. The materials have been synthesized and characterized by means of a wide spectrum of morphological, compositional and photophysical techniques, in order to get an insight into the correlation between the properties of each material and the activity towards different energy conversion applications. Two main topics are addressed: in the first part of the thesis the light harvesting in pyrene functionalized silicon nanocrystals has been discussed, suggesting an original approach to suc- cessfully increase the absorption properties of these nanocrystals. The interaction of these nanocrystals was then studied, in order to give a deeper insight on the charge and energy extraction, preparing the way to implement SiNCs as active material in optoelectronic devices and photovoltaic cells. In addition to this, the luminescence of SiNCs has been exploited to increase the efficiency of conventional photovoltaic cells by means of two innovative architectures. Specifically, SiNCs has been used as luminescent downshifting layer in dye sensitized solar cells, and they were shown to be very promising light emitters in luminescent solar concentrators. The second part of the thesis was concerned on the production of hydrogen by platinum nanoparticles coupled to either electro-active or photo-active materials. Within this context, the electrocatalytic activity of platinum nanoparticles supported on exfoliated graphene has been studied, preparing an high-efficiency catalyst and disclosing the role of the exfoliation technique towards the catalytic activity. Furthermore, platinum nanoparticles have been synthesized within photoactive dendrimers, providing the first proof of concept of a dendrimer-based photocatalytic system for the hydrogen production where both sensitizer and catalyst are anchored to a single scaffold.