898 resultados para Metal analysis
Resumo:
Gate-tunable two-dimensional (2D) materials-based quantum capacitors (QCs) and van der Waals heterostructures involve tuning transport or optoelectronic characteristics by the field effect. Recent studies have attributed the observed gate-tunable characteristics to the change of the Fermi level in the first 2D layer adjacent to the dielectrics, whereas the penetration of the field effect through the one-molecule-thick material is often ignored or oversimplified. Here, we present a multiscale theoretical approach that combines first-principles electronic structure calculations and the Poisson–Boltzmann equation methods to model penetration of the field effect through graphene in a metal–oxide–graphene–semiconductor (MOGS) QC, including quantifying the degree of “transparency” for graphene two-dimensional electron gas (2DEG) to an electric displacement field. We find that the space charge density in the semiconductor layer can be modulated by gating in a nonlinear manner, forming an accumulation or inversion layer at the semiconductor/graphene interface. The degree of transparency is determined by the combined effect of graphene quantum capacitance and the semiconductor capacitance, which allows us to predict the ranking for a variety of monolayer 2D materials according to their transparency to an electric displacement field as follows: graphene > silicene > germanene > WS2 > WTe2 > WSe2 > MoS2 > phosphorene > MoSe2 > MoTe2, when the majority carrier is electron. Our findings reveal a general picture of operation modes and design rules for the 2D-materials-based QCs.
Resumo:
Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.
Resumo:
The work embodied in this thesis was carried out by the author in the Department of Applied Chemistry, CUSAT, Kochi, during the period 2009-2012. The thesis is an introduction to our attempts to evaluate the coordination behavior of some compounds of our interest. The biological activities of semicarbazones and their metal complexes have been an active area of research during the past years because of their significant role in naturally occurring biological systems. Tridentate NNO and ONO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are wellauthenticated compounds in this field and their synthesis, crystal structures and spectral studies are well desirable. Hence, we decided to develop a research program aimed at the syntheses, crystal structures and spectral studies of new N4- phenylsemicarbazones derived from 2-formylpyridine and 3-ethoxysalicylaldehyde and their transition metal complexes and new transition metal complexes of 2- benzoylpyridine-N4-phenylsemicarbazone. In addition to various physicochemical methods of analysis, single crystal X-ray diffraction studies were also used for the characterization of the complexes.
Resumo:
A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (~15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After ~15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ?90-100 ka, followed by another period of anoxic, non-sulfidic conditions lasting for ~15-20 ka. The observed cyclicity at the lower end of the redox scale may have been triggered by repeated incursions of more oxygenated surface- to mid-waters from the South Atlantic resulting in a lowering of the oxic-anoxic chemocline in the water column. Alternatively, sea water sulfate might have been stripped by long-lasting high rates of sulfate reduction, removing the ultimate source for HS**- production.
Resumo:
Co-Al-Ox mixed metal oxides partially modified with Cu or Mg, as well as Ag were successfully prepared, characterized and evaluated as potential catalysts for the N2O decomposition. The materials were characterized by the following techniques: X-Ray Diffraction, Thermogravimetric Analysis (TGA), N2 Physisorption, Hydrogen Temperature-Programmed Reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). Ag-modified HT-derived mixed oxides showed enhanced activity compared to the undoped materials, the optimum composition was found for (1 wt.% Ag)CHT-Co3Al. The catalyst characterization studies suggested that the improved catalytic activity of Ag-promoted catalysts were mainly because of the altered redox properties of the materials.
Resumo:
This is especially well supported by down core variation Zn concentration. As Caspian Sea water intrudes into the Bay, it may be concluded that some part of pollution has sea origin. The geochemical index (Igeo) was reformulated for the area of study using chemical partitioning as well as Pb-210 results. The newly developed geochemical index is indicative of low to medium pollution intensity in the Bay of Gorgan. Thus, any additional pollution into the area of study may leave adverse effects on the aquatic ecology of Bay of Gorgan. Further, lithogenous and non-lithogenous inputs of metals into the Bay were assessed. For this purpose and through chemical partitioning, association of metals with different sedimentary phases was determined. The overall results show that about 114th total metal concentration have been added into the Bay of Gorgan through human activities.
Resumo:
The basic copper(II) carboxylate adduct, [Cu2-OH(O 2CCF3)3(quinoline)2]2, has been shown by an X-ray structural analysis to have a novel tetranuclear structure; magnetic susceptibility data show that substantial Cu-Cu interaction is present in this compound.
Resumo:
This essay studies about contemporary architecture in João Pessoa, capital city of Paraiba State, which analyzes the utilization of steel and aluminum materials from 1990 to 2002, period when significant increase of this utilization is seen. As references, the architectural analysis and Engel structures definitions were used to analyze 40 built buildings, universe researched, to bring together subsidies to comprehend the contemporary production, especially which use the metal as structural and esthetic-formal element
Resumo:
Spent hydroprocessing catalysts (HPCs) are solid wastes generated in refinery industries and typically contain various hazardous metals, such as Co, Ni, and Mo. These wastes cannot be discharged into the environment due to strict regulations and require proper treatment to remove the hazardous substances. Various options have been proposed and developed for spent catalysts treatment; however, hydrometallurgical processes are considered efficient, cost-effective and environmentally-friendly methods of metal extraction, and have been widely employed for different metal uptake from aqueous leachates of secondary materials. Although there are a large number of studies on hazardous metal extraction from aqueous solutions of various spent catalysts, little information is available on Co, Ni, and Mo removal from spent NiMo hydroprocessing catalysts. In the current study, a solvent extraction process was applied to the spent HPC to specifically remove Co, Ni, and Mo. The spent HPC is dissolved in an acid solution and then the metals are extracted using three different extractants, two of which were aminebased and one which was a quaternary ammonium salt. The main aim of this study was to develop a hydrometallurgical method to remove, and ultimately be able to recover, Co, Ni, and Mo from the spent HPCs produced at the petrochemical plant in Come By Chance, Newfoundland and Labrador. The specific objectives of the study were: (1) characterization of the spent catalyst and the acidic leachate, (2) identifying the most efficient leaching agent to dissolve the metals from the spent catalyst; (3) development of a solvent extraction procedure using the amine-based extractants Alamine308, Alamine336 and the quaternary ammonium salt, Aliquat336 in toluene to remove Co, Ni, and Mo from the spent catalyst; (4) selection of the best reagent for Co, Ni, and Mo extraction based on the required contact time, required extractant concentration, as well as organic:aqueous ratio; and (5) evaluation of the extraction conditions and optimization of the metal extraction process using the Design Expert® software. For the present study, a Central Composite Design (CCD) method was applied as the main method to design the experiments, evaluate the effect of each parameter, provide a statistical model, and optimize the extraction process. Three parameters were considered as the most significant factors affecting the process efficiency: (i) extractant concentration, (ii) the organic:aqueous ratio, and (iii) contact time. Metal extraction efficiencies were calculated based on ICP analysis of the pre- and post–leachates, and the process optimization was conducted with the aid of the Design Expert® software. The obtained results showed that Alamine308 can be considered to be the most effective and suitable extractant for spent HPC examined in the study. Alamine308 is capable of removing all three metals to the maximum amounts. Aliquat336 was found to be not as effective, especially for Ni extraction; however, it is able to separate all of these metals within the first 10 min, unlike Alamine336, which required more than 35 min to do so. Based on the results of this study, a cost-effective and environmentally-friendly solventextraction process was achieved to remove Co, Ni, and Mo from the spent HPCs in a short amount of time and with the low extractant concentration required. This method can be tested and implemented for other hazardous metals from other secondary materials as well. Further investigation may be required; however, the results of this study can be a guide for future research on similar metal extraction processes.
Resumo:
Wydział Fizyki: Zakład Teorii Ciała Stałego