994 resultados para Mechanical signal transduction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BAFF, a member of the TNF family, is a fundamental survival factor for transitional and mature B cells. BAFF overexpression leads to an expanded B cell compartment and autoimmunity in mice, and elevated amounts of BAFF can be found in the serum of autoimmune patients. APRIL is a related factor that shares receptors with BAFF yet appears to play a different biological role. The BAFF system provides not only potential insight into the development of autoreactive B cells but a relatively simple paradigm to begin considering the balancing act between survival, growth, and death that affects all cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The root system is fundamentally important for plant growth and survival because of its role in water and nutrient uptake. Therefore, plants rely on modulation of root system architecture (RSA) to respond to a changing soil environment. Although RSA is a highly plastic trait and varies both between and among species, the basic root system morphology and its plasticity are controlled by inherent genetic factors. These mediate the modification of RSA, mostly at the level of root branching, in response to a suite of biotic and abiotic factors. Recent progress in the understanding of the molecular basis of these responses suggests that they largely feed through hormone homeostasis and signaling pathways. Novel factors implicated in the regulation of RSA in response to the myriad endogenous and exogenous signals are also increasingly isolated through alternative approaches such as quantitative trait locus analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to block their translation. RsmA-mediated repression is relieved at the end of exponential growth by two GacS/GacA-controlled regulatory RNAs RsmY and RsmZ, which bind and sequester the RsmA protein. A gene (rsmE) encoding a 64-amino-acid RsmA homolog was identified and characterized in strain CHA0. Overexpression of rsmE strongly reduced the expression of target genes (hcnA, for a hydrogen cyanide synthase subunit; aprA, for the main exoprotease; and phlA, for a component of 2,4-diacetylphloroglucinol biosynthesis). Single null mutations in either rsmA or rsmE resulted in a slight increase in the expression of hcnA, aprA, and phlA. By contrast, an rsmA rsmE double mutation led to strongly increased and advanced expression of these target genes and completely suppressed a gacS mutation. Both the RsmE and RsmA levels increased with increasing cell population densities in strain CHA0; however, the amount of RsmA showed less variability during growth. Expression of rsmE was controlled positively by GacA and negatively by RsmA and RsmE. Mobility shift assays demonstrated specific binding of RsmE to RsmY and RsmZ RNAs. The transcription and stability of both regulatory RNAs were strongly reduced in the rsmA rsmE double mutant. In conclusion, RsmA and RsmE together account for maximal repression in the GacS/GacA cascade of strain CHA0.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In keratinocytes, the cyclin/CDK inhibitor p21(WAF1/Cip1) is a direct transcriptional target of Notch1 activation; loss of either the p21 or Notch1 genes expands stem cell populations and facilitates tumor development. The Notch1 tumor-suppressor function was associated with down-regulation of Wnt signaling. Here, we show that suppression of Wnt signaling by Notch1 activation is mediated, at least in part, by down-modulation of Wnts gene expression. p21 is a negative regulator of Wnts transcription downstream of Notch1 activation, independently of effects on the cell cycle. More specifically, expression of the Wnt4 gene is under negative control of endogenous p21 both in vitro and in vivo. p21 associates with the E2F-1 transcription factor at the Wnt4 promoter and causes curtailed recruitment of c-Myc and p300, and histone hypoacetylation at this promoter. Thus, p21 acts as a selective negative regulator of transcription and links the Notch and Wnt signaling pathways in keratinocyte growth control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Congenital diaphragmatic hernia (CDH) is associated with pulmonary hypertension and death. Administration of nitric oxide (NO) alone remains ineffective in CDH cases. We investigated in near full-term lambs with and without CDH the role of guanylate cyclase (GC), the enzyme activated by NO in increasing cyclic 3'-5'-guanylosine monophosphate, and the role of phosphodiesterase (PDE) 5, the enzyme-degrading cyclic 3'-5'-guanylosine monophosphate. METHODS: Congenital diaphragmatic hernia was surgically created in fetal lambs at 85 days of gestation. Pulmonary hemodynamics were assessed by means of pressure and blood flow catheters (135 days). In vitro, we tested drugs on rings of isolated pulmonary vessels. RESULTS: In vivo, sodium nitroprusside, a direct NO donor, and methyl-2(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5 trimethoxyphenyl)-3-isoquinoline carboxylate sulfate (T-1032) and Zaprinast, both PDE 5 blockers, reduced pulmonary vascular resistance in CDH and non-CDH animals. The activation of GC by sodium nitroprusside and the inhibition of PDE 5 by T-1032 were less effective in CDH animals. In vitro, the stimulation of GC by 3(5'hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1) (a benzyl indazole derivative) and the inhibition of PDE 5 by T-1032 were less effective in pulmonary vascular rings from CDH animals. The YC-1-induced vasodilation in rings from CDH animals was higher when associated with the PDE 5 inhibitor T-1032. CONCLUSIONS: Guanylate cyclase and PDE 5 play a role in controlling pulmonary vascular tone in fetal lambs with or without CDH. Both enzymes seem to be impaired in fetal lambs with CDH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aldosterone stimulation of the mineralocorticoid receptor (MR) is involved in numerous physiological responses, including Na+ homeostasis, blood pressure control, and heart failure. Aldosterone binding to MR promotes different post-translational modifications that regulate MR nuclear translocation, gene expression, and finally receptor degradation. Here, we show that aldosterone stimulates rapid phosphorylation of MR via ERK1/2 in a dose-dependent manner (from 0.1 to 10 nM) in renal epithelial cells. This phosphorylation induces an increase of MR apparent molecular weight, with a maximal upward shift of 30 kDa. Strikingly, these modifications are critical for the regulation of the MR ubiquitylation state. Indeed, we find that MR is monoubiquitylated in its basal state, and this status is sustained by the tumor suppressor gene 101 (Tsg101). Phosphorylation leads to disruption of MR/Tsg101 association and monoubiquitin removal. These events prompt polyubiquitin-dependent destabilization of MR and degradation. Preventing MR phosphorylation by ERK1/2 inhibition or mutation of target serines affects the sequential mechanisms of MR ubiquitylation and inhibits the aldosterone-mediated degradation. Our data provide a novel model of negative feedback of aldosterone signaling, involving sequential phosphorylation, monoubiquitin removal and subsequent polyubiquitylation/degradation of MR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphoinositides, synthesized from myo-inositol, play a critical role in the development of growth cones and in synaptic activity. As neurons cannot synthesize inositol, they take it up from the extracellular milieu. Here, we demonstrate that, in brain and PC12 cells, the recently identified H(+)/myo-inositol symporter HMIT is present in intracellular vesicles that are distinct from synaptic and dense-core vesicles. We further show that HMIT can be triggered to appear on the cell surface following cell depolarization, activation of protein kinase C or increased intracellular calcium concentrations. HMIT cell surface expression takes place preferentially in regions of nerve growth and at varicosities and leads to increased myo-inositol uptake. The symporter is then endocytosed in a dynamin-dependent manner and becomes available for a subsequent cycle of stimulated exocytosis. HMIT is thus expressed in a vesicular compartment involved in activity-dependent regulation of myo-inositol uptake in neurons. This may be essential for sustained signaling and vesicular traffic activities in growth cones and at synapses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BAFF, APRIL and their receptors play important immunological roles, especially in the B cell arm of the immune system. A number of splice isoforms have been described for both ligands and receptors in this subfamily, some of which are conserved between mouse and human, while others are species-specific. Structural and mutational analyses have revealed key determinants of receptor-ligand specificity. BAFF-R has a strong selectivity for BAFF; BCMA has a higher affinity for APRIL than for BAFF, while TACI binds both ligands equally well. The molecular signaling events downstream of BAFF-R, BCMA and TACI are still incompletely characterized. Survival appears to be mediated by upregulation of Bcl-2 family members through NF-kappaB activation, degradation of the pro-apototic Bim protein, and control of subcellular localization of PCKdelta. Very little is known about other signaling events associated with receptor engagement by BAFF and APRIL that lead for example to B cell activation or to CD40L-independent Ig switch.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dopamine-induced changes in striatal gene expression are thought to play an important role in drug addiction and compulsive behaviour. In this study we report that dopamine induces the expression of the transcription factor CCAAT/Enhancer Binding Protein beta (C/EBP)-beta in primary cultures of striatal neurones. We identified the preprotachykinin-A (PPT-A) gene coding for substance P and neurokinin-A as a potential target gene of C/EBPbeta. We demonstrated that C/EBPbeta physically interacts with an element of the PPT-A promoter, thereby facilitating substance P precursor gene transcription. The regulation of PPT-A gene by C/EBPbeta could subserve many important physiological processes involving substance P, such as nociception, neurogenic inflammation and addiction. Given that substance P is known to increase dopamine signalling in the striatum and, in turn, dopamine increases substance P expression in medium spiny neurones, our results implicate C/EBPbeta in a positive feedback loop, changes of which might contribute to the development of drug addiction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bcl10, a caspase recruitment domain (CARD)-containing protein identified from a breakpoint in mucosa-associated lymphoid tissue (MALT) B lymphomas, is essential for antigen-receptor-mediated nuclear factor kappaB (NF-kappaB) activation in lymphocytes. We have identified a novel CARD-containing protein and interaction partner of Bcl10, named Carma1. Carma1 is predominantly expressed in lymphocytes and represents a new member of the membrane-associated guanylate kinase family. Carma1 binds Bcl10 via its CARD motif and induces translocation of Bcl10 from the cytoplasm into perinuclear structures. Moreover, expression of Carma1 induces phosphorylation of Bcl10 and activation of the transcription factor NF-kappaB. We propose that Carma1 is a crucial component of a novel Bcl10-dependent signaling pathway in T-cells that leads to the activation of NF-kappaB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Secondary growth of the vasculature results in the thickening of plant structures and continuously produces xylem tissue, the major biological carbon sink. Little is known about the developmental control of this quantitative trait, which displays two distinct phases in Arabidopsis thaliana hypocotyls. The later phase of accelerated xylem expansion resembles the secondary growth of trees and is triggered upon flowering by an unknown, shoot-derived signal. We found that flowering-dependent hypocotyl xylem expansion is a general feature of herbaceous plants with a rosette growth habit. Flowering induction is sufficient to trigger xylem expansion in Arabidopsis. By contrast, neither flower formation nor elongation of the main inflorescence is required. Xylem expansion also does not depend on any particular flowering time pathway or absolute age. Through analyses of natural genetic variation, we found that ERECTA acts locally to restrict xylem expansion downstream of the gibberellin (GA) pathway. Investigations of mutant and transgenic plants indicate that GA and its signaling pathway are both necessary and sufficient to directly trigger enhanced xylogenesis. Impaired GA signaling did not affect xylem expansion systemically, suggesting that it acts downstream of the mobile cue. By contrast, the GA effect was graft transmissible, suggesting that GA itself is the mobile shoot-derived signal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: The phosphoinositide 3-kinase (PI3K)/Akt pathway is frequently activated in human cancer and plays a crucial role in medulloblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K/Akt signaling as a novel antiproliferative approach in medulloblastoma. EXPERIMENTAL DESIGN: The expression pattern and functions of class I(A) PI3K isoforms were investigated in medulloblastoma tumour samples and cell lines. Effects on cell survival and downstream signaling were analyzed following down-regulation of p110alpha, p110beta, or p110delta by means of RNA interference or inhibition with isoform-specific PI3K inhibitors. RESULTS: Overexpression of the catalytic p110alpha isoform was detected in a panel of primary medulloblastoma samples and cell lines compared with normal brain tissue. Down-regulation of p110alpha expression by RNA interference impaired the growth of medulloblastoma cells, induced apoptosis, and led to decreased migratory capacity of the cells. This effect was selective, because RNA interference targeting of p110beta or p110delta did not result in a comparable impairment of DAOY cell survival. Isoform-specific p110alpha inhibitors also impaired medulloblastoma cell proliferation and sensitized the cells to chemotherapy. Medulloblastoma cells treated with p110alpha inhibitors further displayed reduced activation of Akt and the ribosomal protein S6 kinase in response to stimulation with hepatocyte growth factor and insulin-like growth factor-I. CONCLUSIONS: Together, our data reveal a novel function of p110alpha in medulloblastoma growth and survival.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Direct type I interferon (IFN) signaling on T cells is necessary for the proper expansion, differentiation, and survival of responding T cells following infection with viruses prominently inducing type I IFN. The reasons for the abortive response of T cells lacking the type I IFN receptor (Ifnar1(-/-)) remain unclear. We report here that Ifnar1(-/-) T cells were highly susceptible to natural killer (NK) cell-mediated killing in a perforin-dependent manner. Depletion of NK cells prior to lymphocytic choriomeningitis virus (LCMV) infection completely restored the early expansion of Ifnar1(-/-) T cells. Ifnar1(-/-) T cells had elevated expression of natural cytotoxicity triggering receptor 1 (NCR1) ligands upon infection, rendering them targets for NCR1 mediated NK cell attack. Thus, direct sensing of type I IFNs by T cells protects them from NK cell killing by regulating the expression of NCR1 ligands, thereby revealing a mechanism by which T cells can evade the potent cytotoxic activity of NK cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) is the most potent stimulator of glucose-induced insulin secretion and its pancreatic beta-cell receptor is a member of a new subfamily of G-protein-coupled receptors which includes the receptors for vasoactive intestinal polypeptide, secretin and glucagon. Here we studied agonist-induced GLP-1 receptor internalization in receptor-transfected Chinese hamster lung fibroblasts using three different approaches. First, iodinated GLP-1 bound at 4 degrees C to transfected cells was internalized with a t 1/2 of 2-3 min following warming up of the cells to 37 degrees C. Secondly, exposure to GLP-1 induced a shift in the distribution of the receptors from plasma membrane-enriched to endosomes-enriched membrane fractions, as assessed by Western blot detection of the receptors using specific antibodies. Thirdly, continuous exposure of GLP-1 receptor-expressing cells to iodinated GLP-1 led to a linear accumulation of peptide degradation products in the medium following a lag time of 20-30 min, indicating a continuous cycling of the receptor between the plasma membrane and endosomal compartments. Potassium depletion and hypertonicity inhibited transferrin endocytosis, a process known to occur via coated pit formation, as well as GLP-1 receptor endocytosis. In contrast to GLP-1, the antagonist exendin-(9-39) did not lead to receptor endocytosis. Surface re-expression following one round of GLP-1 receptor endocytosis occurred with a half-time of about 15 min. The difference in internalization and surface re-expression rates led to a progressive redistribution of the receptor in intracellular compartments upon continuous exposure to GLP-1. Finally, endogenous GLP-1 receptors expressed by insulinoma cells were also found to be internalized upon agonist binding. Together our data demonstrate that the GLP-1 receptor is internalized upon agonist binding by a route similar to that taken by single transmembrane segment receptors. The characterization of the pathway and kinetics of GLP-1-induced receptor endocytosis will be helpful towards understanding the role of internalization and recycling in the control of signal transduction by this receptor.