903 resultados para Maximum pseudo-likelihood
Resumo:
We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM's). Learning is treated as a maximum likelihood problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an on-line learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.
Resumo:
Object recognition in the visual cortex is based on a hierarchical architecture, in which specialized brain regions along the ventral pathway extract object features of increasing levels of complexity, accompanied by greater invariance in stimulus size, position, and orientation. Recent theoretical studies postulate a non-linear pooling function, such as the maximum (MAX) operation could be fundamental in achieving such invariance. In this paper, we are concerned with neurally plausible mechanisms that may be involved in realizing the MAX operation. Four canonical circuits are proposed, each based on neural mechanisms that have been previously discussed in the context of cortical processing. Through simulations and mathematical analysis, we examine the relative performance and robustness of these mechanisms. We derive experimentally verifiable predictions for each circuit and discuss their respective physiological considerations.
Resumo:
Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting where elementary observations are joint occurrences of pairs of abstract objects from two finite sets. The main challenge for statistical models in this context is to overcome the inherent data sparseness and to estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample set. Moreover, it is often of considerable interest to extract grouping structure or to find a hierarchical data organization. A novel family of mixture models is proposed which explain the observed data by a finite number of shared aspects or clusters. This provides a common framework for statistical inference and structure discovery and also includes several recently proposed models as special cases. Adopting the maximum likelihood principle, EM algorithms are derived to fit the model parameters. We develop improved versions of EM which largely avoid overfitting problems and overcome the inherent locality of EM--based optimization. Among the broad variety of possible applications, e.g., in information retrieval, natural language processing, data mining, and computer vision, we have chosen document retrieval, the statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images to test and evaluate the proposed algorithms.
Resumo:
Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.
Resumo:
In this paper we focus on the problem of estimating a bounded density using a finite combination of densities from a given class. We consider the Maximum Likelihood Procedure (MLE) and the greedy procedure described by Li and Barron. Approximation and estimation bounds are given for the above methods. We extend and improve upon the estimation results of Li and Barron, and in particular prove an $O(\\frac{1}{\\sqrt{n}})$ bound on the estimation error which does not depend on the number of densities in the estimated combination.
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
Our goal in this paper is to assess reliability and validity of egocentered network data using multilevel analysis (Muthen, 1989, Hox, 1993) under the multitrait-multimethod approach. The confirmatory factor analysis model for multitrait-multimethod data (Werts & Linn, 1970; Andrews, 1984) is used for our analyses. In this study we reanalyse a part of data of another study (Kogovšek et al., 2002) done on a representative sample of the inhabitants of Ljubljana. The traits used in our article are the name interpreters. We consider egocentered network data as hierarchical; therefore a multilevel analysis is required. We use Muthen's partial maximum likelihood approach, called pseudobalanced solution (Muthen, 1989, 1990, 1994) which produces estimations close to maximum likelihood for large ego sample sizes (Hox & Mass, 2001). Several analyses will be done in order to compare this multilevel analysis to classic methods of analysis such as the ones made in Kogovšek et al. (2002), who analysed the data only at group (ego) level considering averages of all alters within the ego. We show that some of the results obtained by classic methods are biased and that multilevel analysis provides more detailed information that much enriches the interpretation of reliability and validity of hierarchical data. Within and between-ego reliabilities and validities and other related quality measures are defined, computed and interpreted
Resumo:
La crisis que se desató en el mercado hipotecario en Estados Unidos en 2008 y que logró propagarse a lo largo de todo sistema financiero, dejó en evidencia el nivel de interconexión que actualmente existe entre las entidades del sector y sus relaciones con el sector productivo, dejando en evidencia la necesidad de identificar y caracterizar el riesgo sistémico inherente al sistema, para que de esta forma las entidades reguladoras busquen una estabilidad tanto individual, como del sistema en general. El presente documento muestra, a través de un modelo que combina el poder informativo de las redes y su adecuación a un modelo espacial auto regresivo (tipo panel), la importancia de incorporar al enfoque micro-prudencial (propuesto en Basilea II), una variable que capture el efecto de estar conectado con otras entidades, realizando así un análisis macro-prudencial (propuesto en Basilea III).
Resumo:
Este trabajo estudia el efecto del estado de salud sobre la afiliación al Régimen Contributivo y el efecto del seguro público (Régimen Contributivo) y el seguro privado sobre el uso de servicios de salud (Consulta externa).
Resumo:
Se estima la tasa de retorno de la educación en Bogotá para 1997 y 2003 por medio de la metodología de Heckman. Se encuentra que los retornos de la educación y de la experiencia potencial son menores en 2003. El ingreso laboral promedio también disminuye.
Resumo:
We propose and estimate a financial distress model that explicitly accounts for the interactions or spill-over effects between financial institutions, through the use of a spatial continuity matrix that is build from financial network data of inter bank transactions. Such setup of the financial distress model allows for the empirical validation of the importance of network externalities in determining financial distress, in addition to institution specific and macroeconomic covariates. The relevance of such specification is that it incorporates simultaneously micro-prudential factors (Basel 2) as well as macro-prudential and systemic factors (Basel 3) as determinants of financial distress. Results indicate network externalities are an important determinant of financial health of a financial institutions. The parameter that measures the effect of network externalities is both economically and statistical significant and its inclusion as a risk factor reduces the importance of the firm specific variables such as the size or degree of leverage of the financial institution. In addition we analyze the policy implications of the network factor model for capital requirements and deposit insurance pricing.
Resumo:
Históricamente se ha reconocido que los conflictos internos afectan de manera directa variables a nivel individual como la salud de las personas, los niveles de escolaridad y el desplazamiento forzoso de los afectados. Sin embargo, solo hasta la última década las investigaciones académicas se han inclinado en documentar y cuantificar rigurosamente los efectos colaterales de la violencia sobre las condiciones de vida de los individuos. La presente investigación estudia cómo la exposición al conflicto en Colombia ha afectado las decisiones en términos de mercado laboral de las personas. La estrategia de identificación internaliza los reconocidos problemas de endogeneidad del conflicto con variables de actividad y desarrollo económico y presenta resultados robustos a fenómenos de migración interna y desplazamiento. En términos de participación laboral y desempleo, se encuentran efectos heterogéneos a nivel de género como respuestas a la violencia experimentada. En particular, la probabilidad de participación laboral de las mujeres se incremente como consecuencia de la exposición al conflicto, mientras que la de desempleo disminuye. Para los hombres, los resultados muestran una menor probabilidad de participación, efecto contrario al de las mujeres, y un efecto análogo en términos de desempleo. La investigación no encuentra efectos diferenciales en términos de informalidad laboral.
Resumo:
La exposición de las distintas situaciones que pueden dar origen a los trastornos del niño y que pueden llevar a calificarlo de débil mental.. Se han entrevistado ciento cincuenta maestros de seis Colegios nacionales, en cincuenta y cuatro cursos desde primero hasta octavo de Educación General Básica. La distribución ha sido la siguiente: Por sexos, 20 cursos de niños, 15 de niñas y 19 mixtos. Por cursos: 7 cursos de primero de EGB., 11 de segundo, 8 de tercero, 7 de cuarto, 8 de quinto, 5 de sexto, 5 de séptimo y 2 de octavo. Por edad: la edad de los niños oscila entre 6 y 16 años.. En el apartado teórico se han utilizado fuentes bibliográficas mientras que en el apartado práctico se ha pasado a los profesores una encuesta sobre los niños débiles mentales.. En el apartado teórico se ha utilizado la técnica descriptiva mientras que en el capítulo práctico se ha empleado la estadística.. El número de niños considerados débiles mentales corresponde a un 11'37 del total. Todos estos niños no pueden seguir el ritmo normal de la clase, con lo cual su nivel escolar puede considerarse bajo. Por otro lado, todos los profesores han interpretado el retraso mental con la debilidad mental. También podemos señalar que la mayoría de estos niños viven en un medio rural, con un ambiente sociocultural bajo. A su vez, son los niños comprendidos entre seis y catorce años los que alcanzan un porcentaje más alto de debilidad mental frente a sus compañeros de mayor edad, sin embargo, a medida que avanzan en edad el número de débiles mentales disminuye..
Resumo:
Se especula una nueva teor??a sobre el parentesco que une a Cervantes con Isabel de Saavedra, su supuesta hija. En contraposici??n a la teor??a de Fran??ois Maret y otros bi??grafos de Cervantes, que aceptan la injuriosa teor??a de que Cervantes vendi?? su hija a Juan de Urbina, Miguel Herrero aboga por la hip??tesis de que Isabel no era su hija, sino su sobrina, de una relaci??n entre su hermana soltera Magdalena y Juan de Urbina, casado con otra mujer, lo que explicar??a las relaciones entre todos los personajes, y concuerda con el car??cter quijotesco de Cervantes.
Resumo:
Resumen tomado de la publicaci??n