938 resultados para Materials at high temperatures


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thunderstorm is one of the most spectacular weather phenomena in the atmosphere. Many parts over the Indian region experience thunderstorms at higher frequency during pre-monsoon months (March- May), when the atmosphere is highly unstable because of high temperatures prevailing at lower levels. Most dominant feature of the weather during the pre-monsoon season over the eastern Indo-Gangetic plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’wester’ or ‘Kalbaishakhi’. The severe thunderstorms associated with thunder, squall line, lightning and hail cause extensive losses in agriculture, damage to structure and also loss of life. The casualty due to lightning associated with thunderstorms in this region is the highest in the world. The highest numbers of aviation hazards are reported during occurrence of these thunderstorms. In India, 72% of tornadoes are associated with this thunderstorm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Starve feeding of single screw extruder was described as an important means of improving the performance characteristics of the extruder. In addition to such improvement with versatility, the starve feeding technique also may affect the mechanical properties of the extrudate since the heat transfer an(l mixing characteristics in the starve fed and Hood fed extruders are not the same. Since the material is more loosely packed in the channels of the starve fed extruder, there may be greater bed mobility and uniformity. Further, the. thermal an(l shear induced degradation are also less since possibilities of developing local high temperatures are less compared to a densely compacted extruder bed. This study has been undertaken mainly to explore the effect of feeding rate on the mechanical properties of rubber and plastic extrudates since the effect of feeding rate has not been analysed from this angle so far.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polarized Raman spectral changes with respect to temperature were investigated for Pr(BrO3)3·9H2O single crystals. FTIR spectra of hydrated and deuterated analogues were also recorded and analysed. Temperature dependent Raman spectral variation have been explained with the help of the thermograms recorded for the crystal. Factor group analysis could propose the appearance ofBrO3 ions at sites corresponding to C3v (4) and D3h (2). Analysis of the vibrational bands at room temperature confirms a distorted C3v symmetry for the BrO3 ion in the crystal. From the vibrations of water molecules, hydrogen bonds of varying strengths have also been identified in the crystal. The appearance υ1 mode of BrO3− anion at lower wavenumber region is attributed to the attachment of hydrogen atoms to the BrO3− anion. At high temperatures, structural rearrangement is taking place for bothH2Omolecule and BrO3 ions leading to the loss ofwater molecules and structural reorientation of bromate ions causing phase transition of the crystal at the temperature of 447 K.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of strongly destabilizing mutations, I106A and V108G of Ribonuclease A (RNase A), on its structure and stability has been determined by NMR. The solution structures of these variants are essentially equivalent to RNase A. The exchange rates of the most protected amide protons in RNase A (35ºC), the I106A variant (35ºC), and the V108G variant (10ºC) yield stability values of 9.9, 6.0, and 6.8 kcal/mol, respectively, when analyzed assuming an EX2 exchange mechanism. Thus, the destabilization induced by these mutations is propagated throughout the protein. Simulation of RNase A hydrogen exchange indicates that the most protected protons in RNase A and the V108G variant exchange via the EX2 regime, whereas those of I106A exchange through a mixed EX1 1 EX2 process. It is striking that a single point mutation can alter the overall exchange mechanism. Thus, destabilizing mutations joins high temperatures, high pH and the presence of denaturating agents as a factor that induces EX1 exchange in proteins. The calculations also indicate a shift from the EX2 to the EX1 mechanism for less protected groups within the same protein. This should be borne in mind when interpreting exchange data as a measure of local stability in less protected regions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of temperature on the developmental times and survival of insects can largely determine their distribution. For invasive species, like the Argentine ant, Linepithema humile Mayr (Hymenoptera: Formicidae), these data are essential for predicting their potential range based on mechanistic models. In the case of this species, such data are too scarce and incomplete to make accurate predictions based on its physiological needs. This research provides comprehensive new data about brood survival and developmental times at a wide range of temperatures under laboratory conditions. Temperature affected both the complete brood development from egg to adult worker and each of the immature stages separately. The higher the temperature, the shorter the development times. Brood survival from egg to adult was low, with the maximum survival rate being only 16% at 26º C. Temperature also affected survival of each of the immature stages differently: eggs were negatively affected by high temperatures, while larvae were negatively affected by low temperatures, and the survival of pupae was apparently independent of environmental temperature. At 32º C no eggs survived, while at 18º C less than 2% of the eggs hatched into larva. The data from the present study are essential for developing prediction models about the distribution range of this tramp species based on its physiological needs in relation to temperature

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EU]Energia berriztagarria iturri naturaletatik sortzen den energia mota da. Energia lortzeko erabiltzen diren baliabide naturalak asko dira, eguzki-energia, haizea, ura… Energia berriztagarrien artean, eolikoa da zabalkunde handien lortu duena; batez ere ingurumen-inpaktu urriagatik eta bere kostuak gero eta txikiagoak izateagatik. Honen ondorioz, energia garbi, lehiakor eta ekonomikoki bideragarria da gaur egun. Hala ere, aerosorgailu hauen ekoizpen prozesuak desabantaila nabaria aurkezten du palen ontze prozesuan. Tenperatura igoeraren ondorioz material konkretu baten degradazioa dela eta. Ikerketa lan honetan, aerosorgailu palen karakterizazioa egingo da eta ontze prozesuan, “polikloruro de binilo” (PVC)-ak jasaten duen degradazioaren azterketa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

THIS PAPER EXAMINES patterns in the placement of apotropaic objects and materials in high- to late-medieval burials in Britain (11th to 15th centuries). It develops an interdisciplinary classification to identify: (1) healing charms and protective amulets; (2) objects perceived to have occult natural power; (3) 'antique' items that were treated as possessing occult power; and (4) rare practices that may have been associated with the demonic magic of divination or sorcery. Making comparisons with amulets deposited in conversion-period graves of the 7th to 9th centuries it is argued that the placement of amulets with the dead was strategic to Christian belief, intended to transform or protect the corpse. The conclusion is that material traces of magic in later medieval graves have a connection to folk magic, performed by women in the care of their families, and drawing on knowledge of earlier traditions. This popular magic was integrated with Christian concerns and tolerated by local clergy, and was perhaps meant to heal or reconstitute the corpse, to ensure its reanimation on judgement day, and to protect the vulnerable dead on their journey through purgatory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A range of archaeological samples have been examined using FT-IR spectroscopy. These include suspected coprolite samples from the Neolithic site of Catalhoyuk in Turkey, pottery samples from the Roman site of Silchester, UK and the Bronze Age site of Gatas, Spain and unidentified black residues on pottery sherds from the Roman sites of Springhead and Cambourne, UK. For coprolite samples the aim of FT-IR analysis is identification. Identification of coprolites in the field is based on their distinct orange colour; however, such visual identifications can often be misleading due to their similarity with deposits such as ochre and clay. For pottery the aim is to screen those samples that might contain high levels of organic residues which would be suitable for GC-MS analysis. The experiments have shown coprolites to have distinctive spectra, containing strong peaks from calcite, phosphate and quartz; the presence of phosphorus may be confirmed by SEM-EDX analysis. Pottery containing organic residues of plant and animal origin has also been shown to generally display strong phosphate peaks. FT-IR has distinguished between organic resin and non-organic compositions for the black residues, with differences also being seen between organic samples that have the same physical appearance. Further analysis by CC-MS has confirmed the identification of the coprolites through the presence of coprostanol and bile acids, and shows that the majority of organic pottery residues are either fatty acids or mono- or di-acylglycerols from foodstuffs, or triterpenoid resin compounds exposed to high temperatures. One suspected resin sample was shown to contain no organic residues. and it is seen that resin samples with similar physical appearances have different chemical compositions. FT-IR is proposed as a quick and cheap method of screening archaeological samples before subjecting them to the more expensive and time-consuming method of GC-MS. This will eliminate inorganic samples such as clays and ochre from CC-MS analysis, and will screen those samples which are most likely to have a high concentration of preserved organic residues. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature regimes that induce and ameliorate cropping troughs ("thermodormancy") were evaluated over two seasons for the everbearing strawberry 'Everest'. When plants were exposed to 26 degrees C for 5, 10, 20 or 30 d in July, heat-induced troughs in cropping were observed in August. An important discovery was that cool (13 degrees C) night temperatures ameliorated the severity of thermodormancy. In this study, thermodormancy appeared to be due principally to flower abortion post-anthesis, as large numbers of flowers emerged in mid-July, during the high temperature treatments, but went on to produce low fruit numbers in mid-August. Flower initiation itself (monitored by crown dissection) was not reduced by high temperatures. The observation that night-time temperature is critical for thermodormancy has significance for commercial production, in which protected cropping tends to increase average temperatures throughout the season, and venting tends to focus on day-time temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we describe results which teach us much about the mechanism of the reduction and oxidation of TiO2(110) by the application of scanning tunnelling microscopy imaging at high temperatures. Titania reduces at high temperature by thermal oxygen loss to leave localized (i.e. Ti3+) and delocalized electrons on the lattice Ti, and a reduced titania interstitial that diffuses into the bulk of the crystal. The interstitial titania can be recalled to the surface by treatment in very low pressures of oxygen, occurring at a significant rate even at 573 K. This re-oxidation occurs by re-growth of titania layers in a Volmer-Weber manner, by a repeating sequence in which in-growth of extra titania within the cross-linked (1 x 2) structure completes the (1 x 1) bulk termination. The next layer then initiates with the nucleation of points and strings which extend to form islands of cross-linked (1 x 2), which once again grow and fill in to reform the (1 x 1). This process continues in a cyclical manner to form many new layers of well-ordered titania. The details of the mechanism and kinetics of the process are considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystallization kinetics of each constituent of poly(p-dioxanone)-b-poly(epsilon-caprolactone) diblock copolymers (PPDX-b-PCL) has been determined in a wide composition range by differential scanning calorimetry and compared to that of the equivalent homopolymers. Spherulitic growth rates were also measured by polarized optical microscopy while atomic force microscopy was employed to reveal the morphology of one selected diblock copolymer. It was found that crystallization drives structure formation and both components form lamellae within mixed spherulitic superstructures. The overall isothermal crystallization kinetics of the PPDX block at high temperatures, where the PCL is molten, was determined by accelerating the kinetics through a previous self-nucleation procedure. The application of the Lauritzen and Ho. man theory to overall growth rate data yielded successful results for PPDX and the diblock copolymers. The theory was applied to isothermal overall crystallization of previously self-nucleated PPDX ( where growth should be the dominant factor if self-nucleation was effective) and the energetic parameters obtained were perfectly matched with those obtained from spherulitic growth rate data of neat PPDX. A quantitative estimate of the increase in the energy barrier for crystallization of the PPDX block, caused by the covalently bonded molten PCL as compared to homo-PPDX, was thus determined. This energy increase can dramatically reduce the crystallization rate of the PPDX block as compared to homo-PPDX. In the case of the PCL block, both the crystallization kinetics and the self-nucleation results indicate that the PPDX is able to nucleate the PCL within the copolymers and heterogeneous nucleation is always present regardless of composition. Finally, preliminary results on hydrolytic degradation showed that the presence of relatively small amounts of PCL within PPDX-bPCL copolymers substantially retards hydrolytic degradation of the material in comparison to homo-PPDX. This increased resistance to hydrolysis is a complex function of composition and its knowledge may allow future prediction of the lifetime of the material for biomedical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lack of sulphur nutrition during potato cultivation has been shown to have profound effects on tuber composition, affecting in particular the concentrations of free asparagine, other amino acids and sugars. This is important because free asparagine and sugars react at high temperatures to form acrylamide, a suspect carcinogen. Free amino acids and sugars also form a variety of other compounds associated with colour and flavour. In this study the volatile aroma compounds formed in potato flour heated at 180 °C for 20 min were compared for three varieties of potato grown, with and without sulphur fertiliser. Approximately 50 compounds were quantified in the headspace extracts of the heated flour, of which over 40 were affected by sulphur fertilisation and/or variety. Many of the 41 compounds found at higher concentrations in the sulphur-deficient flour were Strecker aldehydes and compounds formed from their condensation, whereas only one compound, benzaldehyde, behaved in the same way as did acrylamide and was found at higher concentrations in the sulphur-sufficient flour. The reasons for these effects are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potential longevity of japonica rice (Oryza sativa L. subsp. japonica) seed is particularly sensitive to high temperature – and thus climate change – during development and maturation. Cultivar Taipei 309 was grown at 28/208C (12 h/12 h) and then from 19 DAA (days after 50% anthesis), when seeds were just over half filled, at 28/208C, 30/228C, 32/248C or 34/268C (12 h/12 h). Whereas ability to germinate ex planta had been achieved in almost all seeds by 24 DAA, only half the population were desiccation tolerant. Desiccation tolerance continued to increase over the subsequent 28 d, similarly at all four temperatures. Subsequent longevity, assessed by p50 (period in days to reduce viability to 50% in hermetic storage at 408C with c. 15% moisture content), increased progressively at 28/208C until 38 DAA, and remained constant until the final harvest (52 DAA). The three warmer temperature regimes provided similar longevity to 28/208C at any one harvest, except at 38 DAA where the warmest (34/268C) was poorer. That temperature regime also provided greater seed-to-seed variability within each survival curve. The results confirm that appreciable improvement in seed quality occurs during seed development and also subsequent maturation in japonica rice, but that increase in temperature from 28/208C to 34/268C during late seed filling onwards has comparatively little effect thereon. Comparison with previous investigations suggests that seed quality development may be less sensitive to high temperatures during late development and maturation than during the early seed development that precedes it.