891 resultados para Martensitic transitions
Resumo:
The dependences of phase stability and solid state phase transitions on the crystallite size in ZrO2-10, 12 and 14 mol% Sc2O3 nanopowders are investigated by X-ray powder diffraction using a synchrotron source (S-XPD). The average crystallite sizes lie within the range of 35 to 100 nm, approximately. At room temperature these solid solutions were previously characterised as mixtures of a cubic phase and one or two rhombohedral phases, beta and gamma, with their fractions depending on composition and average crystallite sizes. In this study, it is shown that at high temperatures these solid solutions become cubic single-phased. The size-dependent temperatures of the transitions from the rhombohedral phases to the cubic phase at high temperature are determined through the analyses of a number of S-XPD patterns. These transitions were studied on cooling and on heating, exhibiting hysteresis effects whose relevant features are size and composition dependent.
Order-Disorder Transitions Govern Kinetic Cooperativity and Allostery of Monomeric Human Glucokinase
Resumo:
Glucokinase (GCK) catalyzes the rate-limiting step of glucose catabolism in the pancreas, where it functions as the body's principal glucose sensor. GCK dysfunction leads to several potentially fatal diseases including maturity-onset diabetes of the young type II (MODY-II) and persistent hypoglycemic hyperinsulinemia of infancy (PHHI). GCK maintains glucose homeostasis by displaying a sigmoidal kinetic response to increasing blood glucose levels. This positive cooperativity is unique because the enzyme functions exclusively as a monomer and possesses only a single glucose binding site. Despite nearly a half century of research, the mechanistic basis for GCK's homotropic allostery remains unresolved. Here we explain GCK cooperativity in terms of large-scale, glucose-mediated disorder-order transitions using 17 isotopically labeled isoleucine methyl groups and three tryptophan side chains as sensitive nuclear magnetic resonance (NMR) probes. We find that the small domain of unliganded GCK is intrinsically disordered and samples a broad conformational ensemble. We also demonstrate that small-molecule diabetes therapeutic agents and hyperinsulinemia-associated GCK mutations share a strikingly similar activation mechanism, characterized by a population shift toward a more narrow, well-ordered ensemble resembling the glucose-bound conformation. Our results support a model in which GCK generates its cooperative kinetic response at low glucose concentrations by using a millisecond disorder-order cycle of the small domain as a "time-delay loop," which is bypassed at high glucose concentrations, providing a unique mechanism to allosterically regulate the activity of human GCK under physiological conditions.
Resumo:
We study a strongly interacting "quantum dot 1" and a weakly interacting "dot 2" connected in parallel to metallic leads. Gate voltages can drive the system between Kondo-quenched and non-Kondo free-moment phases separated by Kosterlitz-Thouless quantum phase transitions. Away from the immediate vicinity of the quantum phase transitions, the physical properties retain signatures of first-order transitions found previously to arise when dot 2 is strictly noninteracting. As interactions in dot 2 become stronger relative to the dot-lead coupling, the free moment in the non-Kondo phase evolves smoothly from an isolated spin-one-half in dot 1 to a many-body doublet arising from the incomplete Kondo compensation by the leads of a combined dot spin-one. These limits, which feature very different spin correlations between dot and lead electrons, can be distinguished by weak-bias conductance measurements performed at finite temperatures.
Resumo:
Lyotropic liquid crystalline quaternary mixtures of potassium laurate (KL), potassium sulphate (K2SO4)/alcohol (n-OH)/water, with the alcohols having different numbers of carbon atoms in the alkyl chain (n), from 1-octanol to 1-hexadecanol, were investigated by optical techniques (optical microscopy and laser conoscopy). The biaxial nematic phase domain is present in a window of values of n = n(KL) +/- 2, where n(KL) = 11 is the number of carbon atoms in the alkyl chain of KL. The biaxial phase domain became smaller and the uniaxial-to-biaxial phase transition temperatures shifted to relatively higher temperatures upon going from 1-nonanol to 1-tridecanol. Moreover, compared with other lyotropic mixtures these new mixtures present high birefringence values, which we expect to be related to the micellar shape anisotropy. Our results are interpreted assuming that alcohol molecules tend to segregate in the micelles in a way that depends on the relative value of n with respect to nKL. The larger the value of n, the more alcohol molecules tend to be located in the curved parts of the micelle, favoring the uniaxial nematic calamitic phase with respect to the biaxial and uniaxial discotic nematic phases.
Resumo:
The influence of different Cr and C contents upon the solidification interval of ASTM A352M-06 Grade CA6NM cast martensitic stainless steel has been investigated using computational thermodynamics, and checked against DTA measurements in samples taken from 13 large cast parts, in order to identify potential sources for improvement on the part castability. Calculation results suggest, indeed, that this would be the case for C: when its content increases from 0.018 to 0.044 wt.% C (within the allowed range in the alloy specification), the solidification intervals increases from 25 to 43 K, which suggests improved castability with decreasing C contents. DTA results, however, do not support this prediction, showing a fairly constant solidification interval around 23 K for all investigated samples. The results are discussed both regarding the impact in alloy processing and the fitness of the existing databases to reproduce experimental results in these limiting cases.
Resumo:
Objectives: The purpose of this article is to share the details, outcomes and deliverables from an international workshop on work transitions in London, Ontario, Canada. Participants: Researchers, graduate students, and community group members met to identity ways to advance the knowledge base of strategies to enhance work participation for those in the most disadvantaged groups within society. Methods: A participatory approach was used in this workshop with presentations by researchers and graduate students. This approach included dialogue and discussion with community members. In addition, small group dialogue and debate, world cafe discussions, written summaries of group discussion and reflection boards were used to bring new ideas to the discussion and to build upon what we know. Findings: Two research imperatives and six research recommendations were identified to advance global dialogue on work transitions and to advance the knowledge base. Occupational justice can be used to support future research directions in the study of work transitions. Conclusions: Moving forward requires a commitment of community of researchers, clinicians and stakeholders to address work disparities and implement solutions to promote participation in work.
Resumo:
An explosive synchronization can be observed in scale-free networks when Kuramoto oscillators have natural frequencies equal to their number of connections. The present paper reports on mean-field approximations to determine the critical coupling of such explosive synchronization. It has been verified that the equation obtained for the critical coupling has an inverse dependence on the network average degree. This expression differs from those whose frequency distributions are unimodal and even. In this case, the critical coupling depends on the ratio between the first and second statistical moments of the degree distribution. Numerical simulations were also conducted to verify our analytical results.
Resumo:
Size effects on phase stability and phase transitions in technologically relevant materials have received growing attention. Several works reported that metastable phases can be retained at room temperature in nanomaterials, these phases generally corresponding to the high-temperature polymorph of the same material in bulk state. Additionally, size-dependent shifts in solubility limits and/or in the transition temperatures for on heating or on cooling cycles have been observed. ZrO2-Sc2O3 (zirconia-scandia) solid solutions are known to exhibit very high oxygen ion conductivity provided their structure is composed of cubic and/or pseudocubic tetragonal phases. Unfortunately, for solid zirconia-scandia polycrystalline samples with typical micrometrical average crystal sizes, the high-conductivity cubic phase is only stable above 600°C. Depending on composition, three low-conductivity rhombo-hedral phases (β, γ and δ) are stable below 600°C down to room temperature, within the compositional range of interest for SOFCs. In previous investigations, we showed that the rhombohedral phases can be avoided in nanopowders with average crystallite size lower than 35 nm.
Resumo:
During the last few decades, coral reefs have become a disappearing feature of tropical marine environments, and those reefs that do remain are severely threatened. It is understood that humans have greately altered the environment under which these ecosystems previously have thrived and evoloved. Overharvesting of fish stocks, global warming and pollution are some of the most prominent threats, acting on coral reefs at several spatial and temporal scales. Presently, it is common that coral reefs have been degraded into alternative ecosystem regimes, such as macroalgae-dominated or sea urchin-barren. Although these ecosystems could potentially return to coral dominance in a long-term perspective, when considdering current conditions, it seems likely that they will persist in their degraded states. Thus, recovery of coral reefs cannot be taken for granted on a human timescale. Multiple stressors and disturbances, which are increasingly characteristic of coral reef environments today, are believed to act synergistically and produce ecological surprises. However, current knowledge of effects of compounded disturbances and stress is limited. Based on five papers, this thesis investigates the sublethal response of multiple stressors on coral physiology, as well as the effects of compounded stress and disturbance on coral reef structure and function. Adaptive responses to stress and disturbance in relation to prior experience are highlighted. The thesis further explores how inherent characteristics (traits) of corals and macroalgae may influence regime expression when faced with altered disturbance regimes, in particular overfishing, eutrophication, elevated temperature, and enhanced substrate availability. Finally, possibilities of affecting the resilience of macroalgae-dominaed reefs and shifting the community composition towards a coral-dominated regime are explored.
Resumo:
I tumori macroscopici e microscopici, dopo la loro prima fase di crescita, sono composti da un numero medio elevato di cellule. Così, in assenza di perturbazioni esterne, la loro crescita e i punti di equilibrio possono essere descritti da equazioni differenziali. Tuttavia, il tumore interagisce fortemente col macroambiente che lo circonda e di conseguenza una descrizione del tutto deterministica risulta a volte inappropriata. In questo caso si può considerare l'interazione con fluttuazioni statistiche, causate da disturbi esterni, utilizzando le equazioni differenziali stocastiche (SDE). Questo è vero in modo particolare quando si cerca di modellizzare tumori altamente immunogenici che interagiscono con il sistema immunitario, in quanto la complessità di questa interazione risulta in fenomeni di multistabilità. Così, il rumore può provocare disturbi e indurre transizioni di stato (Noise-Induced-Transitions). E' importante notare che una NIT può avere implicazioni profonde sulla vita di un paziente, dal momento che una transizione da uno stato di equilibrio piccolo, nelle dimensioni del tumore, ad uno stato di equilibrio macroscopico, nella maggior parte dei casi significa il passaggio dalla vita alla morte. Generalmente l'approccio standard è quello di modellizzare le fluttuazioni stocastiche dei parametri per mezzo di rumore gaussiano bianco o colorato. In alcuni casi però questa procedura è altamente inadeguata, a causa della illimitatezza intrinseca dei rumori gaussiani che può portare a gravi incongruenze biologiche: pertanto devono essere utilizzati dei rumori "limitati", che, tuttavia, sono molto meno studiati di quelli gaussiani. Inoltre, l'insorgenza di NIT dipende dal tipo di rumore scelto, che rivela un nuovo livello di complessità in biologia. Lo scopo di questa tesi è quello di studiare le applicazioni di due tipi diversi di "rumori limitati" nelle transizioni indotte in due casi: interazione tra tumore e sistema immunitario e chemioterapia dei tumori. Nel primo caso, abbiamo anche introdotto un nuovo modello matematico di terapia, che estende, in modo nuovo, il noto modello di Norton-Simon.
Resumo:
This thesis individuates and characterizes irreversible transformations occurring in specific organic and oligomeric/polymeric thin films. These transformations are dewetting in discotic liquid crystals thin films and dewetting and smoothing in oligomeric and polyemeric films. Irreversible transformations are extensively characterized by means of optical and atomic force microscopy. In the case of discotic liquid crystals films the morphological characterization is performed sinchronically with electrical measurements of current during dewetting.
Resumo:
Heat treatment of steels is a process of fundamental importance in tailoring the properties of a material to the desired application; developing a model able to describe such process would allow to predict the microstructure obtained from the treatment and the consequent mechanical properties of the material. A steel, during a heat treatment, can undergo two different kinds of phase transitions [p.t.]: diffusive (second order p.t.) and displacive (first order p.t.); in this thesis, an attempt to describe both in a thermodynamically consistent framework is made; a phase field, diffuse interface model accounting for the coupling between thermal, chemical and mechanical effects is developed, and a way to overcome the difficulties arising from the treatment of the non-local effects (gradient terms) is proposed. The governing equations are the balance of linear momentum equation, the Cahn-Hilliard equation and the balance of internal energy equation. The model is completed with a suitable description of the free energy, from which constitutive relations are drawn. The equations are then cast in a variational form and different numerical techniques are used to deal with the principal features of the model: time-dependency, non-linearity and presence of high order spatial derivatives. Simulations are performed using DOLFIN, a C++ library for the automated solution of partial differential equations by means of the finite element method; results are shown for different test-cases. The analysis is reduced to a two dimensional setting, which is simpler than a three dimensional one, but still meaningful.
Resumo:
III-nitride materials are very promising for high speed electronics/optical applications but still suffer in performance due to problems during high quality epitaxial growth, evolution of dislocation and defects, less understanding of fundamental physics of materials/processing of devices etc. This thesis mainly focus on GaN based heterostructures to understand the metal-semiconductor interface properties, 2DE(H)G influence on electrical and optical properties, and deep level states in GaN and InAlN, InGaN materials. The detailed electrical characterizations have been employed on Schottky diodes at GaN and InAl(Ga)N/GaN heterostructures in order to understand the metal-semiconductor interface related properties in these materials. I have observed the occurrence of Schottky barrier inhomogenity, role of dislocations in terms of leakage and creating electrically active defect states within energy gap of materials. Deep level transient spectroscopy method is employed on GaN, InAlN and InGaN materials and several defect levels have been observed related to majority and minority carriers. In fact, some defects have been found common in characteristics in ternary layers and GaN layer which indicates that those defect levels are from similar origin, most probably due to Ga/N vacancy in GaN/heterostructures. The role of structural defects, roughness has been extensively understood in terms of enhancing the reverse leakage current, suppressing the mobility in InAlN/AlN/GaN based high electron mobility transistor (HEMT) structures which are identified as key issues for GaN technology. Optical spectroscopy methods have been employed to understand materials quality, sub band and defect related transitions and compared with electrical characterizations. The observation of 2DEG sub band related absorption/emission in optical spectra have been identified and proposed for first time in nitride based polar heterostructures, which is well supported with simulation results. In addition, metal-semiconductor-metal (MSM)-InAl(Ga)N/GaN based photodetector structures have been fabricated and proposed for achieving high efficient optoelectronics devices in future.
Resumo:
Das in dieser Arbeit vorgestellte Experiment zur Messung des magnetischen Moments des Protons basiert auf der Messung des Verhältnisses von Zyklotronfrequenz und Larmorfrequenz eines einzelnen, in einer kryogenen Doppel-Penning Falle gespeicherten Protons. In dieser Arbeit konnten erstmalig zwei der drei Bewegungsfrequenzen des Protons gleichzeitig im thermischen Gleichgewicht mit entsprechenden hochsensitiven Nachweissystemen nicht-destruktiv detektiert werden, wodurch die Messzeit zur Bestimmung der Zyklotronfrequenz halbiert werden konnte. Ferner wurden im Rahmen dieser Arbeit erstmalig einzelne Spin-Übergänge eines einzelnen Protons detektiert, wodurch die Bestimmung der Larmorfrequenz ermöglicht wird. Mithilfe des kontinuierlichen Stern-Gerlach Effekts wird durch eine sogenannte magnetische Flasche das magnetische Moment an die axiale Bewegungsmode des Protons gekoppelt. Eine Änderung des Spinzustands verursacht folglich einen Frequenzsprung der axialen Bewegungsfrequenz, welche nicht-destruktiv gemessen werden kann. Erschwert wird die Detektion des Spinzustands dadurch, dass die axiale Frequenz nicht nur vom Spinmoment, sondern auch vom Bahnmoment abhängt. Die große experimentelle Herausforderung besteht also in der Verhinderung von Energieschwankungen in den radialen Bewegungsmoden, um die Detektierbarkeit von Spin-Übergängen zu gewährleisten. Durch systematische Studien zur Stabilität der axialen Frequenz sowie einer kompletten Überarbeitung des experimentellen Aufbaus, konnte dieses Ziel erreicht werden. Erstmalig kann der Spinzustand eines einzelnen Protons mit hoher Zuverlässigkeit bestimmt werden. Somit stellt diese Arbeit einen entscheidenden Schritt auf dem Weg zu einer hochpräzisen Messung des magnetischen Moments des Protons dar.
Resumo:
A field study of thermal circulation over very gentle slope is described for a specific day characterised by weak synoptic conditions. The emphasis was on morning and evening transitions, but measurements cover the entire day; therefore a brief analysis is performed to represent the general thermal circulation pattern. Both transition periods are characterised by complex dynamic behaviours. During evening transition, the upslope flow has got through a stagnation condition characterised by wind velocity U<0:5 m=s. Only when the stagnating air has become negative buoyant, the flow is allowed to pour downslope like a slab. Some features of front formation has been found during the transition development, such as delay time of downslope flow start up along the slope, and the presence of positive turbulent kinetic energy at the onset of the motion. Eventually the observed evening transition has followed a mixed mechanisms, with features from different models. Therefore the Rayleigh number seems not to be a good criterion by which parametrise evening transition itself. Morning transition is characterised by destruction of nocturnal temperature inversion and the onset of upslope flow. Inversion destruction can be described in terms of CBL growth at surface and inversion decent from the top of the layer. KH has found to be a good indicator of inversion breakup, if used as parameter to study the inversion breakup in terms of temperature reversal. After the inversion breakup, buoyancy and mechanical productions supply the flow with the necessary energy to start the upslope wind. More quantitative analysis are provided by the study of stability parameters and turbulent kinetic energy budgets. Gradient Richardson number has been used in this terms, finding that a mixed SBL-CBL behaviour dominates the most of the observed layers. Tke budget has shown high turbulent behaviour during morning transition while the evening transition has developed entirely in laminar condition, apart from short intermittent turbulent events.