997 resultados para Marine phylogeography
Resumo:
The sectioned otoliths of four fish species from a tropical demersal trawl fishery in Western Australia revealed a series of alternating trans-lucent and opaque zones in reflected light. The translucent zones, referred to as growth rings, were counted to determine fish ages. The width of the opaque zone on the periphery of the otolith section as a proportion of the width of the previous opaque zone (index of completion) was used to determine the periodicity of growth-ring formation. This article describes a method for modeling changes in the index of ring completion over time, from which a parameter for the most probable time of growth-ring formation (with confidence intervals) can be determined. The parameter estimate for the timing of new growth-ring formation for Lethrinus sp. 3 was from mid July to mid September, for Lutjanus vitta from early July to the end of August, for Nemipterus furcosus from mid July to late September, and for Lutjanus sebae from mid July to mid November. The confidence intervals for the timing of formation of growth rings was variable between species, being smallest for L. vitta, and variable between fish of the same species with different numbers of growth rings. The stock assessments of these commercially important species relies on aging information for all the age classes used in the assessment. This study demonstrated that growth rings on sectioned otoliths were laid down annually, irrespective of the number of growth rings, and also demonstrated that the timing of ring formation for these tropical species can be determined quantitatively (with confidence intervals.
Resumo:
In August and September of 1997 and 1998, we used SCUBA techniques to surgically implant Vemco V16 series acoustic transmitters in 6 greenspotted rockfish (Sebastes chlorostictus) and 16 bocaccio (S. paucispinis) on the flank of Soquel Canyon in Monterey Bay, California. Fish were captured at depths of 100–200 m and reeled up to a depth of approximately 20 m, where a team of SCUBA divers anesthetized and surgically implanted acoustic transmitters in them. Tagged fish were released on the seafloor at the location of catch. An array of recording receivers on the seafloor enabled the tracking of horizontal and vertical fish movements for a three-month period. Greenspotted rockfish tagged in 1997 exhibited almost no vertical movement and showed limited horizontal movement. Two of these tagged fish spent more than 90% of the time in a 0.58-km2 area. Three other tagged greenspotted rockfish spent more than 60% of the time in a 1.6-km2 area but displayed frequent horizontal movements of at least 3 km. Bocaccio exhibited somewhat greater movements. Of the 16 bocaccio tagged in 1998, 10 spent less than 10% of the time in the approximately 12-km2 study area. One fish stayed in the study area for about 50% of the study time. Signals from the remaining 5 fish were recorded in the study area the entire time. Bocaccio frequently moved vertically 10–20 m and occasionally displayed vertical movements of 100 m or greater.
Resumo:
We have formulated a model for analyzing the measurement error in marine survey abundance estimates by using data from parallel surveys (trawl haul or acoustic measurement). The measurement error is defined as the component of the variability that cannot be explained by covariates such as temperature, depth, bottom type, etc. The method presented is general, but we concentrate on bottom trawl catches of cod (Gadus morhua). Catches of cod from 10 parallel trawling experiments in the Barents Sea with a total of 130 paired hauls were used to estimate the measurement error in trawl hauls. Based on the experimental data, the measurement error is fairly constant in size on the logarithmic scale and is independent of location, time, and fish density. Compared with the total variability of the winter and autumn surveys in the Barents Sea, the measurement error is small (approximately 2–5%, on the log scale, in terms of variance of catch per towed distance). Thus, the cod catch rate is a fairly precise measure of fish density at a given site at a given time.