994 resultados para Machine-readable Library Cataloguing
Resumo:
The requirements set by the market for electrical machines become increasingly demanding requiring more sophisticated technological solutions. Companies producing electrical ma-chines are challenged to develop machines that provide competitive edge for the customer for example through increased efficiency, reliability or some customer specific special requirement. The objective of this thesis is to derive a proposal for the first steps to transform the electrical machine product development process of a manufacturing company towards lean product development. The current product development process in the company is presented together with the processes of four other companies interviewed for the thesis. On the basis of current processes of the electrical machine industry and the related literature, a generalized electrical machine product development process is derived. The management isms and –tools utilized by the companies are analyzed. Adoption of lean Pull-Event –reviews, Oobeya –management and Knowledge based product development are suggested as the initial steps of implementing lean product development paradigm in the manufacturing company. Proposals for refining the cur-rent product development process and increasing the stakeholder involvement in the development projects are made. Lean product development is finding its way to Finnish electrical machine industry, but the results will be available only after the methods have been implemented and adopted by the companies. There is some enthusiasm about the benefits of lean approach and if executed successfully it will provide competitive edge for the Finnish electrical machine industry.
Resumo:
The power demand of many mobile working machines such as mine loaders, straddle carriers and harvesters varies significantly during operation, and typically, the average power demand of a working machine is considerably lower than the demand for maximum power. Consequently, for most of the time, the diesel engine of a working machine operates at a poor efficiency far from its optimum efficiency range. However, the energy efficiency of dieseldriven working machines can be improved by electric hybridization. This way, the diesel engine can be dimensioned to operate within its optimum efficiency range, and the electric drive with its energy storages responds to changes in machine loading. A hybrid working machine can be implemented in many ways either as a parallel hybrid, a series hybrid or a combination of these two. The energy efficiency of hybrid working machines can be further enhanced by energy recovery and reuse. This doctoral thesis introduces the component models required in the simulation model of a working machine. Component efficiency maps are applied to the modelling; the efficiency maps for electrical machines are determined analytically in the whole torque–rotational speed plane based on the electricalmachine parameters. Furthermore, the thesis provides simulation models for parallel, series and parallel-series hybrid working machines. With these simulation models, the energy consumption of the working machine can be analysed. In addition, the hybridization process is introduced and described. The thesis provides a case example of the hybridization and dimensioning process of a working machine, starting from the work cycle of the machine. The selection and dimensioning of the hybrid system have a significant impact on the energy consumption of a hybrid working machine. The thesis compares the energy consumption of a working machine implemented by three different hybrid systems (parallel, series and parallel-series) and with different component dimensions. The payback time of a hybrid working machine and the energy storage lifetime are also estimated in the study.
Resumo:
Presentation at Open Repositories 2013, DSpace User Group, on 12.7.2013 in Charlottetown, PEI, Canada
Resumo:
This work deals with an hybrid PID+fuzzy logic controller applied to control the machine tool biaxial table motions. The non-linear model includes backlash and the axis elasticity. Two PID controllers do the primary table control. A third PID+fuzzy controller has a cross coupled structure whose function is to minimise the trajectory contour errors. Once with the three PID controllers tuned, the system is simulated with and without the third controller. The responses results are plotted and compared to analyse the effectiveness of this hybrid controller over the system. They show that the proposed methodology reduces the contour error in a proportion of 70:1.
Resumo:
This doctoral thesis presents a study on the design of tooth-coil permanent magnet synchronous machines. The electromagnetic properties of concentrated non-overlapping winding permanent magnet synchronous machines, or simply tooth-coil permanent magnet synchronous machines (TC-PMSMs), are studied in details. It is shown that current linkage harmonics play the deterministic role in the behavior of this type of machines. Important contributions are presented as regards of calculation of parameters of TC-PMSMs,particularly the estimation of inductances. The current linkage harmonics essentially define the air-gap harmonic leakage inductance, rotor losses and localized temporal inductance variation. It is proven by FEM analysis that inductance variation caused by the local temporal harmonic saturation results in considerable torque ripple, and can influence on sensorless control capabilities. Example case studies an integrated application of TC-IPMSMs in hybrid off-highway working vehicles. A methodology for increasing the efficiency of working vehicles is introduced. It comprises several approaches – hybridization, working operations optimization, component optimization and integration. As a result of component optimization and integration, a novel integrated electro-hydraulic energy converter (IEHEC) for off-highway working vehicles is designed. The IEHEC can considerably increase the operational efficiency of a hybrid working vehicle. The energy converter consists of an axial-piston hydraulic machine and an integrated TCIPMSM being built on the same shaft. The compact assembly of the electrical and hydraulic machines enhances the ability to find applications for such a device in the mobile environment of working vehicles.Usage of hydraulic fluid, typically used in working actuators, enables direct-immersion oil cooling of designed electrical machine, and further increases the torque- and power- densities of the whole device.
Resumo:
The evolution of digital circuit technology, leadind to higher speeds and more reliability allowed the development of machine controllers adapted to new production systems (e.g., Flexible Manufacturing Systems - FMS). Most of the controllers are developed in agreement with the CNC technology of the correspondent machine tool manufacturer. Any alterations or adaptation of their components are not easy to be implemented. The machine designers face up hardware and software restrictions such as lack of interaction among system's elements and impossibility of adding new function. This is due to hardware incompatibility and to software not allowing alterations in the source program. The introduction of open architecture philosophy propitiated the evolution of a new generation of numeric controllers. This brought the conventional CNC technology to the standard IBM - PC microcomputer. As a consequence, the characteristics of the CNC (positioning) and the microcomputer (easy of programming, system configuration, network communication etc) are combined. Some researchers have addressed a flexible structure of software and hardware allowing changes in the hardware basic configuration and all control software levels. In this work, the development of open architecture controllers in the OSACA, OMAC, HOAM-CNC and OSEC architectures is described.
Resumo:
Kristiina Hormia-Poutasen esitys CBUC-konferenssissa Barcelonassa 12.4.2013.
Resumo:
Kristiina Hormia-Poutasen esitys Liber-konferenssissa Münchenissa, Saksassa 27.6.2013.
Resumo:
Kristiina Hormia-Poutasen esitys KRE-konferenssissa 2013.
Resumo:
Kristiina Hormia-Poutasen esitys KOBV-konferenssissa Berliinissä, Saksassa kesäkuussa 2013.
Resumo:
The papermaking industry has been continuously developing intelligent solutions to characterize the raw materials it uses, to control the manufacturing process in a robust way, and to guarantee the desired quality of the end product. Based on the much improved imaging techniques and image-based analysis methods, it has become possible to look inside the manufacturing pipeline and propose more effective alternatives to human expertise. This study is focused on the development of image analyses methods for the pulping process of papermaking. Pulping starts with wood disintegration and forming the fiber suspension that is subsequently bleached, mixed with additives and chemicals, and finally dried and shipped to the papermaking mills. At each stage of the process it is important to analyze the properties of the raw material to guarantee the product quality. In order to evaluate properties of fibers, the main component of the pulp suspension, a framework for fiber characterization based on microscopic images is proposed in this thesis as the first contribution. The framework allows computation of fiber length and curl index correlating well with the ground truth values. The bubble detection method, the second contribution, was developed in order to estimate the gas volume at the delignification stage of the pulping process based on high-resolution in-line imaging. The gas volume was estimated accurately and the solution enabled just-in-time process termination whereas the accurate estimation of bubble size categories still remained challenging. As the third contribution of the study, optical flow computation was studied and the methods were successfully applied to pulp flow velocity estimation based on double-exposed images. Finally, a framework for classifying dirt particles in dried pulp sheets, including the semisynthetic ground truth generation, feature selection, and performance comparison of the state-of-the-art classification techniques, was proposed as the fourth contribution. The framework was successfully tested on the semisynthetic and real-world pulp sheet images. These four contributions assist in developing an integrated factory-level vision-based process control.