945 resultados para MULTIVARIATE DISTRIBUTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers a wide class of semiparametric problems with a parametric part for some covariate effects and repeated evaluations of a nonparametric function. Special cases in our approach include marginal models for longitudinal/clustered data, conditional logistic regression for matched case-control studies, multivariate measurement error models, generalized linear mixed models with a semiparametric component, and many others. We propose profile-kernel and backfitting estimation methods for these problems, derive their asymptotic distributions, and show that in likelihood problems the methods are semiparametric efficient. While generally not true, with our methods profiling and backfitting are asymptotically equivalent. We also consider pseudolikelihood methods where some nuisance parameters are estimated from a different algorithm. The proposed methods are evaluated using simulation studies and applied to the Kenya hemoglobin data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization and exploratory analysis is an important part of any data analysis and is made more challenging when the data are voluminous and high-dimensional. One such example is environmental monitoring data, which are often collected over time and at multiple locations, resulting in a geographically indexed multivariate time series. Financial data, although not necessarily containing a geographic component, present another source of high-volume multivariate time series data. We present the mvtsplot function which provides a method for visualizing multivariate time series data. We outline the basic design concepts and provide some examples of its usage by applying it to a database of ambient air pollution measurements in the United States and to a hypothetical portfolio of stocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To examine effects of primary care physicians (PCPs) and patients on the association between charges for primary care and specialty care in a point-of-service (POS) health plan. Data Source. Claims from 1996 for 3,308 adult male POS plan members, each of whom was assigned to one of the 50 family practitioner-PCPs with the largest POS plan member-loads. Study Design. A hierarchical multivariate two-part model was fitted using a Gibbs sampler to estimate PCPs' effects on patients' annual charges for two types of services, primary care and specialty care, the associations among PCPs' effects, and within-patient associations between charges for the two services. Adjusted Clinical Groups (ACGs) were used to adjust for case-mix. Principal Findings. PCPs with higher case-mix adjusted rates of specialist use were less likely to see their patients at least once during the year (estimated correlation: –.40; 95% CI: –.71, –.008) and provided fewer services to patients that they saw (estimated correlation: –.53; 95% CI: –.77, –.21). Ten of 11 PCPs whose case-mix adjusted effects on primary care charges were significantly less than or greater than zero (p < .05) had estimated, case-mix adjusted effects on specialty care charges that were of opposite sign (but not significantly different than zero). After adjustment for ACG and PCP effects, the within-patient, estimated odds ratio for any use of primary care given any use of specialty care was .57 (95% CI: .45, .73). Conclusions. PCPs and patients contributed independently to a trade-off between utilization of primary care and specialty care. The trade-off appeared to partially offset significant differences in the amount of care provided by PCPs. These findings were possible because we employed a hierarchical multivariate model rather than separate univariate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The penetration, translocation, and distribution of ultrafine and nanoparticles in tissues and cells are challenging issues in aerosol research. This article describes a set of novel quantitative microscopic methods for evaluating particle distributions within sectional images of tissues and cells by addressing the following questions: (1) is the observed distribution of particles between spatial compartments random? (2) Which compartments are preferentially targeted by particles? and (3) Does the observed particle distribution shift between different experimental groups? Each of these questions can be addressed by testing an appropriate null hypothesis. The methods all require observed particle distributions to be estimated by counting the number of particles associated with each defined compartment. For studying preferential labeling of compartments, the size of each of the compartments must also be estimated by counting the number of points of a randomly superimposed test grid that hit the different compartments. The latter provides information about the particle distribution that would be expected if the particles were randomly distributed, that is, the expected number of particles. From these data, we can calculate a relative deposition index (RDI) by dividing the observed number of particles by the expected number of particles. The RDI indicates whether the observed number of particles corresponds to that predicted solely by compartment size (for which RDI = 1). Within one group, the observed and expected particle distributions are compared by chi-squared analysis. The total chi-squared value indicates whether an observed distribution is random. If not, the partial chi-squared values help to identify those compartments that are preferential targets of the particles (RDI > 1). Particle distributions between different groups can be compared in a similar way by contingency table analysis. We first describe the preconditions and the way to implement these methods, then provide three worked examples, and finally discuss the advantages, pitfalls, and limitations of this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the diagnosis of diabetic autonomic neuropathy (DAN) various autonomic tests are used. We took a novel statistical approach to find a combination of autonomic tests that best separates normal controls from patients with DAN.