710 resultados para MULTIPHASE STEELS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The 4340 are classified as ultra-high strength steels used by the aviation industry and aerospace applications such as aircraft landing gear and several structural applications, usually in quenched and tempered condition. In this situation occurs reduction of toughness, which encourages the study of multiphasic and bainitic structures, in order to maintain strength without loss of toughness. In this study, ferritic-pearlitic structure was compared to bainitic and martensitic structure, identified by the reagents Nital, LePera and Sodium Metabisulfite. Sliding wear tests of the type pin-on-disk were realized and the results related to the microstructure of these materials and also to their hardnesses. It is noted that these different microstructures had very similar behavior, concluding that all three tested pairs can be used according to the request level.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Application of acoustoelasticity to measure the stress generated by milling in ASTM A36 steel plates
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Materiais estruturais utilizados no projeto de equipamentos e instalações industriais podem apresentar mudança de seu comportamento à fratura quando se varia a temperatura. Este tipo de comportamento caracteriza-se pela existência de uma curva de transição, onde 3 regiões ficam bem definidas: os patamares inferior e superior e a região de transição. Na região de transição, os resultados experimentais apresentam alto espalhamento e são bastante dependentes da geometria ensaiada. Para solucionar este problema, foi desenvolvido um modelo analítico experimental, que resultou na edição da norma ASTM E1921-97. O trabalho inclui um estudo da influência de diversas rotas de tratamentos térmicos aplicadas em um aço 4130 utilizado pela indústria aeronáutica, um aço de qualidade API utilizado pela indústria petrolífera e um aço da classe A516 atualmente utilizado pela indústria nacional de vasos de pressão, na microestrutura, propriedades mecânicas de tração e tenacidade à fratura. Os resultados mostraram que o aço 4130 A450, apresentou a melhor correlação entre resistência e tenacidade entre as microestruturas pesquisadas. Este comportamento deve estar associado a rota de tratamento térmico aplicada a esta condição. O tratamento de austêmpera possibilita a formação de bainita que, tradicionalmente é conhecida por apresentar elevados valores de tenacidade. O método proposto pela ASTM pode ser considerado viável para as diversas microestruturas pesquisadas ampliando a aplicação da metodologia que recomenda o ensaio apenas para aços ferríticos. No entanto, a metodologia da Curva Mestra em materiais tratados termicamente deve ser conduzida de forma a se estabelecer parâmetros que considerem as modificações microestruturais sofridas pelo material.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
2,25Cr-1Mo alloy steels are widely used in petrochemical plant equipments working in high temperature conditions because of their good mechanical proprieties in these conditions. Although, when exposed for a long time at high temperature, in the rage of 343 °C to 593 °C, may present the temper embrittlement phenomenon. The component named stripper of assembly converter of fluid catalytic cracking unit (UFCC) of studied plant is manufactured using this material, which is subject to temper embrittlement. The phenomenon of temper embrittlement refers to progressive lose of toughness, making the material brittle. With embrittlement, equipaments manufactured with this material are under risks to suffer brittle fracture in the cool down and start-up situations of them, which can cause catastrophic failures. By this reason, this research studies presence of temper ebrittlement phenomenon on this material. To verify the toughness of the material is conventionally used charpy V-notch test. However, this test requires the removing of samples of the material to make specimens. This fact becomes critical when talk about structural components of an equipment. So, this research also studies a non-destructive test that can be executes in-situ, known as instrumented indentation, as an alternative detection of the phenomenon at the component stripper, by comparative of the mechanical proprieties obtained by conventional tests in similar samples
Resumo:
Because of the great metallurgical advances, the welded tubes by HF / ERW (High Frequency / Electrical Resistance Welding) have played a more active role in the oil and gas, gradually replacing tubes produced by other processes (UOE, SAW, and others) to deep water applications, in high and extremely low temperatures, highpressure conditions and in highly corrosive environments. However, studies have revealed that defects in the welded joints are in one of main causes of failures in pipelines. Associated with damage external and the stringent requirements of this sector, the welded joints become particularly critical for his toughness and the determination of this particular property is fundamental. This study aims to evaluate the toughness of the HF / ERW pipes in HSLA steel API X70 class, used in pipelines transport systems of gas and oil from data obtained with CTOD tests (Crack Tip Opening Displacement). The main objectives of this project are: mechanical and microstructural characterization of steels API X70 manufactured in Brazil; and evaluation of the toughness of weld process by HF / ERW steel API X70 national. After having the tests done, mechanical, chemical and metallurgical, we have the conclusion that those pipe are in agreement to API 5L 42ª edition for X70MO and the toughness behaves like the expected
Resumo:
In the second half of the last century the automobile industries suffered from the petroleum crisis caused mainly by the wars in the Middle East. These crises led the automakers rethink their vehicles. One of the most important events after that was the adoption of new steels by the industry. One example is the TRIP steels (Transformationinduced plasticity). It is known that the macroscopic behavior of a material is strongly dependent on its microstructure and therefore the quantitative metallography is important to understand and relate the material properties to its microstructure. In this work, different specimens of TRIP steels were etched using LePera reagent. The obtained images were analyzed using digital processing. Using the ImageJ software the methods threshold and watershed were studied as well as a comparison with the ASTM E562 standard. The methods were compared and finally the morphological characteristics and volumetric fraction of the retained austenite and martensite phases were analyzed. The results showed that the threshold led to a higher number of identified grains with lower mean area and total area fraction than the watershed method and ASTM standard
Resumo:
The study of mechanical properties of high-alloy special steels is of great interest of the steel industry due to the great demand by companies that manufacture automotive components of high criticality, and also because of its high commercial value. However, the development of this type of alloy metals demand highly technical knowledge. Among these extremely important kinds of steel, the subject which is the interest of this study is the special steel modified by niobium. The manganese and niobium are the main alloying elements in the composition of these steels, both of them increase the stability of the austenite region, however, manganese increases the hardenability and tensile yield strength, and niobium increases the mechanical strength and promotes refining the grain. The mechanical characterization of steel SAE 1312 modified the niobium was made in order to gain a better understanding of the influence on the mechanical properties caused by aging at different temperatures and for different reductions in the drawing of gauge material. This characterization was made by means of tensile test and hardness. This material showed an increase in yield strength and hardness when gauge with large reductions during the wiredrawing, but when subjected to aging temperatures higher than 300 ° C had a slight loss of these properties
Resumo:
The technological advancement in order to improve the methods of obtaining energy sources such as oil and natural gas is mainly motivated by the recent discovery of oil reserves. So, increasingly , there is a need for a thorough knowledge of the materials used in the manufacture of pipelines for transportation and exploration of oil and natural gas. The steels which follow the API standard (American Petroleum Institute), also known as high strenght low alloy (hsla), are used in the manufacture of these pipes, as they have, with their welded joints, mechanical properties to withstand the working conditions to which these ducts will be submitted . The objective of this study is to evaluate the fatigue behavior in microalloyed steel grade API 5L X80 welded by process HF / ERW . For this, axial fatigue tests to obtain S-N curve (stress vs. number of cycles ) were conducted. To complement the study, it was performed metallographic , fractographic , Vickers hardness tests and tensile tests to characterize the mechanical properties of the steel and check whether the values satisfy the specifications of the API 5L standard . From the fatigue tests , it was concluded that the surface finish influences directly on the fatigue life of the material
Resumo:
This work aims to study the Dual-Phase 600 and 780 steels, which are part of technology development project materials for the automotive industry. It is worth underscoring the antagonistic properties as the Dual-Phase steel assemble, high mechanical strength and elongation due its microstructure, ferrite and martensite. These properties are obtained by a intercritical heat treatment which facilitates the formation of a hardness metastable microstructure shaped plates of low carbon steels. The applicability of Dual Phase steel in the structure of vehicles is huge and its production is already on a commercial scale, so the study and development of this material implies lower cost in automobile manufacturing processes. The dual phase steels DP600 and DP780 underwent tensile, hardness and metallographic analysis to evaluate and comparing its properties. The results indicate that the DP780 steel has higher strength and hardness than the DP600 steel and its microstructure consists of martensite higher fraction which accounts for the higher resistance and hardness. However, the DP600 has higher conformability to DP780 steel