678 resultados para MONOXIDE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exhaled breath (EB) and exhaled breath condensate (EBC) contain numerous volatile gases and a wide-array of non-volatile compounds, several of which have been investigated as markers of lower airway inflammation in human and veterinary medicine and have been used to diagnose and monitor diseases associated with pulmonary inflammation. The identification of reliable biomarkers within EB and EBC is an active research focus with the common goal of establishing non-invasive and repeatable assessment of respiratory health and disease in mammals. The application of EB and EBC analysis holds considerable appeal in the investigation of respiratory disease in Thoroughbred racehorses, as inflammatory airway disease (IAD) is a common cause for poor performance in this population of animals. This study documented that EB and EBC samples can be safely collected from Thoroughbred racehorses in their own environment, without adverse effect or interference with the horse’s training regimen. The use of off-line collection and analysis of exhaled gases via chemiluminescence is suitable for the measurement of exhaled carbon monoxide, but is not appropriate for analyzing exhaled nitric oxide in horses. Significant changes in the concentration of exhaled CO and the pH of EBC occurred in response to strenuous exercise and when exercising in different environmental temperatures. Exhaled CO was associated with tracheal mucus score (and the number of neutrophils in the mucus) and EBC pH was significantly different in horses with evidence of neutrophilic IAD compared to horses without IAD. Numerous physiological and environmental variables were identified as confounding factors in the assessment of both exhaled CO and EBC pH, with respiratory rate prior to EB collection, and during EBC collection, consistently identified as an explanatory variable influencing the concentration of exhaled biomarkers. Further studies in EB and EBC analysis in horses need to focus on objectively accounting for key respiratory dynamics during sample collection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropospheric ozone (O3) adversely affects human health, reduces crop yields, and contributes to climate forcing. To limit these effects, the processes controlling O3 abundance as well as that of its precursor molecules must be fully characterized. Here, I examine three facets of O3 production, both in heavily polluted and remote environments. First, using in situ observations from the DISCOVER-AQ field campaign in the Baltimore/Washington region, I evaluate the emissions of the O3 precursors CO and NOx (NOx = NO + NO2) in the National Emissions Inventory (NEI). I find that CO/NOx emissions ratios derived from observations are 21% higher than those predicted by the NEI. Comparisons to output from the CMAQ model suggest that CO in the NEI is accurate within 15 ± 11%, while NOx emissions are overestimated by 51-70%, likely due to errors in mobile sources. These results imply that ambient ozone concentrations will respond more efficiently to NOx controls than current models suggest. I then investigate the source of high O3 and low H2O structures in the Tropical Western Pacific (TWP). A combination of in situ observations, satellite data, and models show that the high O3 results from photochemical production in biomass burning plumes from fires in tropical Southeast Asia and Central Africa; the low relative humidity results from large-scale descent in the tropics. Because these structures have frequently been attributed to mid-latitude pollution, biomass burning in the tropics likely contributes more to the radiative forcing of climate than previously believed. Finally, I evaluate the processes controlling formaldehyde (HCHO) in the TWP. Convective transport of near surface HCHO leads to a 33% increase in upper tropospheric HCHO mixing ratios; convection also likely increases upper tropospheric CH3OOH to ~230 pptv, enough to maintain background HCHO at ~75 pptv. The long-range transport of polluted air, with NO four times the convectively controlled background, intensifies the conversion of HO2 to OH, increasing OH by a factor of 1.4. Comparisons between the global chemistry model CAM-Chem and observations show that consistent underestimates of HCHO by CAM-Chem throughout the troposphere result from underestimates in both NO and acetaldehyde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indoor air quality (IAQ) parameters in 73 primary classrooms in Porto were examined for the purpose of assessing levels of volatile organic compounds (VOCs), aldehydes, particulate matter, ventilation rates and bioaerosols within and between schools, and potential sources. Levels of VOCs, aldehydes, PM2.5 , PM10 , bacteria and fungi, carbon dioxide (CO2 ), carbon monoxide, temperature and relative humidity were measured indoors and outdoors and a walkthrough survey was performed concurrently. Ventilation rates were derived from CO2 and occupancy data. Concentrations of CO2 exceeding 1000 ppm were often encountered, indicating poor ventilation. Most VOCs had low concentrations (median of individual species <5 μg/m(3) ) and were below the respective WHO guidelines. Concentrations of particulate matter and culturable bacteria were frequently higher than guidelines/reference values. The variability of VOCs, aldehydes, bioaerosol concentrations, and CO2 levels between schools exceeded the variability within schools. These findings indicate that IAQ problems may persist in classrooms where pollutant sources exist and classrooms are poorly ventilated; source control strategies (related to building location, occupant behavior, maintenance/cleaning activities) are deemed to be the most reliable for the prevention of adverse health consequences in children in schools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of the research project "On the Contribution of Schools to Children's Overall Indoor Air Exposure" is to study associations between adverse health effects, namely, allergy, asthma, and respiratory symptoms, and indoor air pollutants to which children are exposed to in primary schools and homes. Specifically, this investigation reports on the design of the study and methods used for data collection within the research project and discusses factors that need to be considered when designing such a study. Further, preliminary findings concerning descriptors of selected characteristics in schools and homes, the study population, and clinical examination are presented. The research project was designed in two phases. In the first phase, 20 public primary schools were selected and a detailed inspection and indoor air quality (IAQ) measurements including volatile organic compounds (VOC), aldehydes, particulate matter (PM2.5, PM10), carbon dioxide (CO2), carbon monoxide (CO), bacteria, fungi, temperature, and relative humidity were conducted. A questionnaire survey of 1600 children of ages 8-9 years was undertaken and a lung function test, exhaled nitric oxide (eNO), and tear film stability testing were performed. The questionnaire focused on children's health and on the environment in their school and homes. One thousand and ninety-nine questionnaires were returned. In the second phase, a subsample of 68 children was enrolled for further studies, including a walk-through inspection and checklist and an extensive set of IAQ measurements in their homes. The acquired data are relevant to assess children's environmental exposures and health status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most people have come in contact with sources of carbon monoxide (CO). As a result, potential exposure to CO at harmful levels can pose a serious health risk. The objective of this report was to examine if knowledge of CO sources varied in South Carolina by region of the state. Many unintentional CO poisonings in the home are the result of lack of knowledge about potential sources of CO. Per the current study, the odds of incorrectly responding to household gas appliances being a source of CO were significantly different in adjusted analyses for region, marital status, ethnicity and age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing concern about the depletion of oil has spurred worldwide interest in finding alternative feedstocks for important petrochemical commodities and fuels. On the one hand, the enormous re-serves found (208 trillion cubic feet proven1), environmental sustainability and lower overall costs point to natural gas as the primary source for energy and chemicals in the near future.2 Nowadays the transformation of methane into useful chemicals and liquid fuels is only feasible via synthesis gas, a mixture of molecular hydrogen and carbon monoxide, that is further transformed to methanol or to hydrocarbons under moderate reaction conditions (150-350 °C and 10-100 bar).3 For a major cost reduction and in order to valorize small natural gas sources, either more efficient "syngas to products" catalysts should be produced or the manner in which methane is initially activated should be changed, ideally by developing catalysts able to directly oxidize methane to interesting products such as methanol. On the other hand, from the point of view of CO2 emissions, the use of the re-maining fossil resources will further contribute to global warming. In this scenario, the development of efficient routes for the transformation of CO2 into useful chemicals and fuels would represent a considerable step forward towards sustainability. Indeed, the environmental and economic incen-tives to develop processes for the conversion of CO2 into fuels and chemicals are great. However, for such conversions to become economically feasible, considerable research is necessary. In this lecture we will summarize our recent efforts into the design of new catalytic systems, based on MOFs and COFs, to address these challenges. Examples include the development of new Fe based FTS catalysts, electrocatalysts for the selective conversion of CO2 into syngas, the development of efficient catalysts for the utilization of formic acid as hydrogen storage vector and the development of new enzyme inspired systems for the direct transformation of methane to methanol under mild reaction conditions. References (1) http://www.clearonmoney.com/dw/doku.php?id=public:natural_gas_reserves. (2) Derouane, E. G.; Parmon, V.; Lemos, F.; Ribeiro, F. R. Sustainable Strategies for the Up-grading of Natural Gas: Fundamentals, Challenges, and Opportunities; Springer, 2005. (3) Rofer-DePoorter, C. K. Chemical Reviews. ACS Publications 1981, pp 447–474.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty one sampling locations were assessed for carbon monoxide (CO), carbondioxide (CO2), oxygen (O2), sulphur dioxide (SO2), nitrogen dioxide (NO2), nitrogen oxide (NO), suspended particulate matter (SPM) and noise level using air pollutants measurement methods approved by ASTM for each specific parameter. All equipments and meters were all properly pre-calibrated before each usage for quality assurance. Findings of the study showed that measured levels of noise (61.4 - 101.4 dBA), NO (0.0 - 3.0 ppm), NO2 (0.0 - 3.0 ppm), CO (1.0 – 42.0 ppm) and SPM (0.14 – 4.82 ppm) in all sampling areas were quite high and above regulatory limits however there was no significant difference except in SPM (at all the sampling points), and noise, NO2 and NO (only in major traffic intersection). Air quality index (AQI) indicates that the ambient air can be described as poor for SPM, varied from good to very poor for CO, while NO and NO2 are very good except at major traffic intersection where they were both poor and very poor (D-E). The results suggest that strict and appropriate vehicle emission management, industrial air pollution control coupled with close burning management of wastes should be considered in the study area to reduce the risks associated with these pollutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente estudio exploratorio evalúa la exposición al monóxido de carbono (CO), expresado en porcentaje de carboxihemoglobina (%COHb), entre los trabajadores de los centros de control vehicular (CRV) DANTON-Cuenca. Todos los trabajadores (n=55) de los CRVs de Capulispamba y Mayancela participaron en este estudio. El %COHb se determinó a partir de muestras de sangre tomadas al inicio y final de un día laboral de febrero, abril y julio de 2013. Los resultados muestran que el %COHb se incrementó del inicio al final de la jornada laboral en ambos CRVs tanto en el grupo de trabajadores que fuman y no fumadores (P<0.001). Entre los no fumadores (N=42), el %COHb al final de la jornada sobrepasó el valor límite biológico (VLB) para COHb (3.5%) únicamente en el CRV de Mayancela (4.12%, P<0.05). Entre los fumadores (N=13), los promedios de %COHb al final de la jornada sobrepasaron los VLB en ambos CRVs. Se concluye, que los trabajadores de los CRVs de Mayancela y aquellos que fuman presentan %COHb mayores al VLB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent tendency to utilize parking lots for other purposes has demonstrated that more time has been spent by visitors, mainly in great cities. Therefore, this paper investigates the thermal comfort and the air quality indoors in areas specifically used as parking lots by analyzing the direct relation between such environments and vehicular pollution. The thermal comfort and the quality of air indoors in parking lots with different architectonic typology (ground-floor and underground) are also studied, aiming to contribute to the proposition of suitable new areas designated to human usage. Field research was done, in two distinct periods within different weather conditions (January and July) in, two naturally cooled, parking lots located in Natal - RN. The internal environment agents were measured by using tools for air temperature, humidity, speed and direction; interviews with employees and visitors and chemical analysis through appropriate tools to analyze specific material, carbon monoxide and ozone. The results showed that chemical agents densely concentrate mostly in the closed parking space, aggravated by weather conditions, which dissatisfied the visitors. Still, it was shown that architectonic typology, alongside topographical aspects compromise internal environmental conditions, which increases the retention of pollution, leading to dissatisfactory thermal comfort levels and becoming less suitable for usage by visitors considering air and thermal comfort aspects. Consequently, they are not suitable for human stay due to the poor quality of the indoor air

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure to diesel particulate matter from diesel exhaust has been shown to have adverse health effects in humans. In 2012 The International Agency for Research on Cancer classified diesel exhaust as a group 1 know human carcinogen. Because of the associated health effects, there has been a strong push to reduce the amount of diesel exhaust present in the mining industry. Biodiesel is one to the more common and promising control options used to reduce the amount of diesel particulate matter that is generated during fuel combustion. The use of biodiesel over petroleum diesel has been shown to reduce not only particulate matter, but hydro carbon and carbon monoxide mass emissions as well. Personal and area samples were collected at an underground metal mine in the northwestern United States to evaluate the current blend of B70 biodiesel. The objective of this research was to evaluate the carbon levels associated with diesel particulate matter generated from the combustion of a B70 biodiesel. Data was also compared to past studies on which diesel particulate matter from petroleum diesel was evaluated. Samples were taken on four separate four day campaigns between March and October of 2014. Area samples were taken from 7 different areas in the mine and personal samples were taken from a 20 person cohort. The equipment used for sampling was compliant with the NIOSH 5040 method. Statistical analysis of the results was done using Minitab 17 software. The statistical analysis showed that the total carbon concentrations from biodiesel were well below the MSHA exposure limit. Results also showed that organic/elemental carbon ratios were consistent with past studies as the concentrations of organic carbon were significantly higher than those of elemental carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of the research presented in this work is to provide some important insights about computational modeling of open-shell species. Such projects are: the investigation of the size-extensivity error in Equation-of-Motion Coupled Cluster methods, the analysis of the Long-Range corrected scheme in predicting UV-Vis spectra of Cu(II) complexes with the 4-imidazole acetate and its ethylated derivative, and the exploration of the importance of choosing a proper basis set for the description of systems such as the lithium monoxide anion. The most significant findings of this research are: (i) The contribution of the left operator to the size-extensivity error of the CR-EOMCC(2,3) approach, (ii) The cause of d-d shifts when varying the range-separation parameter and the amount of the exact exchange arising from the imbalanced treatment of localized vs. delocalized orbitals via the "tuned" CAM-B3LYP* functional, (iii) The proper acidity trend of the first-row hydrides and their lithiated analogs that may be reversed if the basis sets are not correctly selected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the past three decades the automotive industry is facing two main conflicting challenges to improve fuel economy and meet emissions standards. This has driven the engineers and researchers around the world to develop engines and powertrain which can meet these two daunting challenges. Focusing on the internal combustion engines there are very few options to enhance their performance beyond the current standards without increasing the price considerably. The Homogeneous Charge Compression Ignition (HCCI) engine technology is one of the combustion techniques which has the potential to partially meet the current critical challenges including CAFE standards and stringent EPA emissions standards. HCCI works on very lean mixtures compared to current SI engines, resulting in very low combustion temperatures and ultra-low NOx emissions. These engines when controlled accurately result in ultra-low soot formation. On the other hand HCCI engines face a problem of high unburnt hydrocarbon and carbon monoxide emissions. This technology also faces acute combustion controls problem, which if not dealt properly with yields highly unfavorable operating conditions and exhaust emissions. This thesis contains two main parts. One part deals in developing an HCCI experimental setup and the other focusses on developing a grey box modelling technique to control HCCI exhaust gas emissions. The experimental part gives the complete details on modification made on the stock engine to run in HCCI mode. This part also comprises details and specifications of all the sensors, actuators and other auxiliary parts attached to the conventional SI engine in order to run and monitor the engine in SI mode and future SI-HCCI mode switching studies. In the latter part around 600 data points from two different HCCI setups for two different engines are studied. A grey-box model for emission prediction is developed. The grey box model is trained with the use of 75% data and the remaining data is used for validation purpose. An average of 70% increase in accuracy for predicting engine performance is found while using the grey-box over an empirical (black box) model during this study. The grey-box model provides a solution for the difficulty faced for real time control of an HCCI engine. The grey-box model in this thesis is the first study in literature to develop a control oriented model for predicting HCCI engine emissions for control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in kcat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.