794 resultados para MATERIALS SCIENCE, MULTIDISCIPLINARY
Resumo:
The nanocomposites of general layered clays and metal sulfides could be produced from reactions of the layered clay aqueous suspensions and water-soluble metal-thiourea complexes. The clay could be saponite, montmorillonite, hectorite and laponite, while the metal sulfide could be cobalt sulfide, nickel sulfide, zinc sulfide, cadmium sulfide, and lead sulfide. In the nanocomposites, the clay could be incorporated with the metal sulfide pillars and metal sulfide nanoparticles. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Double- walled carbon nanotubes (DWNTs) were synthesized used carbon black as the dot carbon source by a semi-continuous hydrogen arc discharge process. High-resolution transmission electron microscopy (HRTEM) observations revealed that most of the tubes were DWNTs with outer and inner diameters in the range of 2.67 - 4 nm and 1.96 - 3.21 nm, respectively. Most of the DWNTs were in a bundle form of about 10 - 30 nm in diameter with high purity ( about 70%) from thermal gravimetric analysis (TGA), resonant laser Raman spectroscopy, scanning electron microscopy (SEM) and TEM characterizations. It was found that carbon black as the dot carbon source could be easy controlled to synthesize one type of nanotube. A simple process combining oxidation and acid treatment to purify the DWNT bundles was used without damaging the bundles. The structure of carbon black, as the key element for influencing purity, bundle formation and purification of DWNTs, is discussed.
Resumo:
Various Mg/carbon and Mg/noncarbon composite systems were prepared by mechanical milling and their hydrogen storage behaviors were investigated. It was found that all the carbon additives exhibited prominent advantage over the noncarbon additives, such as BN nanotubes (BNNTs) or asbestos in improving the hydrogen capacity and dehydriding/hydriding kinetics of Mg. And among the various carbon additives, purified single-walled carbon nanotubes (SWNTs) exhibited the most prominent catalytic effect on the hydrogen storage properties of Mg. The hydrogen capacities of all Mg/C composites at 573 K reached more than 6.2 wt.% within 10 min, about 1.5 wt.% higher than that of pure MgH2 at the identical operation conditions. Under certain operation temperatures, H-absorption/desorption rates of Mg/carbon systems were over one order of magnitude higher than that of pure Mg. Furthermore, the starting temperature of the desorption reaction of MgH2 has been lowered to 60 K by adding SWNTs. On the basis of the hydrogen storage behavior and structure/phase investigations, the possible mechanism involved in the property improvement of Mg upon adding carbon materials was discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Highly ordered rodlike periodic mesoporous organosilicas (PMO) were successfully synthesized using 1.2-bis(trimethoxysilyl)ethane as an precursor and triblock copolymer P123 as a template at low acid concentration and in the presence of inorganic salts (KCl). The role of acid and salt as well as the effects of synthesis temperature and reactant mole ratio in the control of morphology and the formation of ordered mesostructure was systematically examined. It was found that the addition of inorganic salt can dramatically expand the range of the synthesis parameters to produce highly ordered PMO structure and improve the quality of PMO materials. The morphology of PMOs was significantly dependent on the induction time for precipitation. The uniform PMO rods can only be synthesized in a narrow range of acid and salt concentrations. The results also show that the optimized salt concentration (I M) and low acidity (0.167 M) were beneficial to the formation of not only highly ordered mesostructure but also rodlike morphology. Increasing acidity resulted in fast hydrolysis reaction and short rod or plate-like particles. Highly ordered rod can also be prepared at low temperature (35 degrees C) with high salt amount (1.5 M) or high temperature (45 degrees C) with low salt amount (0.5 M). Optimum reactant molar composition at 40 degrees C is 0.035P123:8KCl:1.34HCI:444H(2)O:1.0bis(trimethoxysilyl)ethane. Lower or higher SiO2/PI23 ratio led to the formation of uniform meso-macropores or pore-blocking effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A platinum (Pt) on pure ceria (CeO2) supported by carbon black (CB) anode was synthesized using a combined process of precipitation and coimpregnation methods. The electrochemical activity of methanol oxidation reaction on synthesized Pt-CeO2/CB anodes was investigated by cyclic voltammetry and chronoamperometry experimentation. To improve the anode property on Pt-CeO2/CB, the influence of particle morphology and particle size on anode properties was examined. The morphology and particle size of the pure CeO2 particles could be controlled by changing the preparation conditions. The anode properties (i.e., peak current density and onset potential for methanol oxidation) were improved by using nanosize CeO2 particles. This indicates that a larger surface area and higher activity on the surface of CeO2 improve the anode properties. The influence of particle morphology of CeO2 on anode properties was not very large. The onset potential for methanol oxidation reaction on Pt-CeO2/CB, which consisted of CeO2 with a high surface area, was shifted to a lower potential compared with that on the anodes, which consisted of CeO2 with a low surface area. The onset potential on Pt-CeO2/CB at 60 degrees C became similar to that on the commercially available Pt-Ru/carbon anode. We suggest that the rate-determining steps of the methanol oxidation reaction on Pt-CeO2/CB and commercially available Pt-Ru/carbon anodes are different, which accounts for the difference in performance. In the reaction mechanism on Pt-CeO2/CB, we conclude that the released oxygen species from the surface of CeO2 particles contribute to oxidation of adsorbed CO species on the Pt surface. This suggests that the anode performance of the Pt-CeO2/CB anode would lead to improvements in the operation of direct methanol fuel cells at 80 degrees C by the enhancement of diffusion of oxygen species created from the surface of nanosized CeO2 particles. Therefore, we conclude that fabrication of nanosized CeO2 with a high surface area is a key factor for development of a high-quality Pt-CeO2/CB anode in direct methanol fuel cells.
Resumo:
Investigation of the secondary nucleation threshold (SNT) of alpha-glucose monohydrate was conducted in aqueous solutions in agitated batch systems for the temperature range 10 to 40 degrees C. The width of the SNT decreased as the induction time increased and was found to be temperature independent when supersaturation was based on the absolute concentration driving force. Nonnucleating seeded batch bulk crystallizations of this sugar were performed isothermally in the same temperature range as the SNT experiments, and within the SNT region to avoid nucleation. The growth kinetics were found to be linearly dependent on the supersaturation of total glucose in the system when the mutarotation reaction is not rate limiting. The growth rate constant increases with increasing temperature and follows an Arrhenius relationship with an activation energy of 50 +/- 2 kJ/mol. alpha-Glucose monohydrate shows significant crystal growth rate dispersion (GRD). For the seeds used, the 95% range of growth rates was within a factor of 6 for seeds with a narrow particle size distribution, and 8 for seeds with a wider distribution that was used at 25 degrees C. The results will be used to model the significance of the mutarotation reaction on the overall crystallization rate of D-glucose in industrial crystallization.
Resumo:
We discuss recent progress towards the establishment of important structure-property-function relationships in eumelanins-key functional bio-macromolecular systems responsible for photoprotection and immune response in humans, and implicated in the development of melanoma skin cancer. We focus on the link between eumelanin's secondary structure and optical properties such as broad band UV-visible absorption and strong non-radiative relaxation; both key features of the photo-protective function. We emphasise the insights gained through a holistic approach combining optical spectroscopy with first principles quantum chemical calculations, and advance the hypothesis that the robust functionality characteristic of eumelanin is related to extreme chemical and structural disorder at the secondary level. This inherent disorder is a low cost natural resource, and it is interesting to speculate as to whether it may play a role in other functional bio-macromolecular systems.
Resumo:
A method has been developed to produce thick (> 400 mu m) AlN surface layers oil aluminium plates at 540 degrees C, under nitrogen at atmospheric pressure. A critical element of the process is the use of Mg powder placed in close proximity to the Al plate surface. The Mg reduces/disrupts the natural, protective oxide film on the Al surface. The nitride layers form through two distinct modes, one growing outward from the Al plate surface and the other growing into the Al. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A rheological assessment of the effect of trace level Ni additions on the solidification of Sn-0.7Cu
Resumo:
The influence of trace level Ni additions on the eutectic solidification mode of Sn-0.7Cu has been studied using continuous torque experiments during solidification. The solid fraction at which resistance to paddle rotation at the thermal centre of the sample occurs is related to the spatial distribution of solid during solidification. The results indicate that a transition in solidification mode occurs in the range 0-300 ppm Ni. Growth occurs antiparallel to heat flow from near the mould walls in the Ni-free alloy, while equiaxed growth from distributed centres dominates in alloys containing at least 300 ppm Ni. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A novel apparatus, high-pressure/high-temperature nickel flow loop, was constructed to study the effect of the flow on the rate of erosion-corrosion of mild steel in hot caustic. It has been successfully used to measure the corrosion rate of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep, the polarization resistance method, and electrochemical impedance spectroscopy (EIS). Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. The corrosion rate of the coupons in the high velocity section was generally higher than that of the coupons in the low velocity section. One coupon in the disturbed flow region had a significantly higher corrosion rate than the others. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper reviews various aspects of anodizing of magnesium alloys, such as the basics, processes, properties and applications. It systematically summarises the existing fundamental studies and technical developments of anodizing of magnesium alloys, and concludes that new anodizing processes based on electrolytic plasma anodizing that convert the surface of a magnesium alloy into a hard ceramic coating in an electrolytic bath using high energy electric discharges can offer improved wear and corrosion resistance. These new anodized coatings are often claimed to perform better than the traditional ones obtained through older anodizing processes, such as DOW17 or HAE. The new anodizing techniques are chromate free and hence environment friendly. It is expected that more cost-effective, environment-friendly and non-toxic anodizing techniques will be developed and applied to magnesium alloy components in the future.
Resumo:
The edge-to-edge matching model, which was originally developed for predicting crystallographic features in diffusional phase transformations in solids, has been used to understand the formation of in-plane textures in TiSi2 (C49) thin films on Si single crystal (001)si surface. The model predicts all the four previously reported orientation relationships between C49 and Si substrate based on the actual atom matching across the interface and the basic crystallographic data only. The model has strong potential to be used to develop new thin film materials. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The microstructural variation of Norit RI Extra activated carbon, progressively heated at 1373 K, was explored in terms of pore size and pore wall thickness distributions, for various periods of heating time, determined by argon adsorption at 87 K, both using an infinite as well as and finite wall thickness model. The latter approach has recently been developed in our laboratory and has been applied to several virgin carbons. The current results show significant variations in small pore size regions (< 7 angstrom) in association with strong growth of thick walls having at least three carbon sheets, as a result of heat treatment. In particular, shrinkage of the smallest pores due to strong interaction between their opposite walls as well as smoothening of carbon wall surfaces due to an increase in graphitization degree under thermal treatment have been found. Further, the results of pore wall thickness distribution are well corroborated by X-ray diffraction. The results of pore size and pore wall thickness distributions are also shown to be consistent with transmission electron microscopy analyses. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Solvation. pressure due to adsorption of fluids in porous materials is the cause of elastic deformation of an adsorbent, which is accessible to direct experimental measurements. Such a deformation contributes to the Helmholtz free energy of the whole adsorbent-adsorbate system due to accumulation of compression or tension energy by the solid. It means that in the general case the solid has to be considered as not solely a source of the external potential field for the fluid confined in the pore volume, but also as thermodynamically nonmert component of the solid-fluid system. We present analysis of nitrogen adsorption isotherms and heat of adsorption in slit graphitic pores accounting for the adsorption deformation by means of nonlocal density functional theory. (c) 2006 Elsevier Ltd. All rights reserved.