787 resultados para MACHINE LEARNING CLASSIFIERS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mobile malware has been growing in scale and complexity spurred by the unabated uptake of smartphones worldwide. Android is fast becoming the most popular mobile platform resulting in sharp increase in malware targeting the platform. Additionally, Android malware is evolving rapidly to evade detection by traditional signature-based scanning. Despite current detection measures in place, timely discovery of new malware is still a critical issue. This calls for novel approaches to mitigate the growing threat of zero-day Android malware. Hence, the authors develop and analyse proactive machine-learning approaches based on Bayesian classification aimed at uncovering unknown Android malware via static analysis. The study, which is based on a large malware sample set of majority of the existing families, demonstrates detection capabilities with high accuracy. Empirical results and comparative analysis are presented offering useful insight towards development of effective static-analytic Bayesian classification-based solutions for detecting unknown Android malware.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both embodied and symbolic accounts of conceptual organization would predict partial sharing and partial differentiation between the neural activations seen for concepts activated via different stimulus modalities. But cross-participant and cross-session variability in BOLD activity patterns makes analyses of such patterns with MVPA methods challenging. Here, we examine the effect of cross-modal and individual variation on the machine learning analysis of fMRI data recorded during a word property generation task. We present the same set of living and non-living concepts (land-mammals, or work tools) to a cohort of Japanese participants in two sessions: the first using auditory presentation of spoken words; the second using visual presentation of words written in Japanese characters. Classification accuracies confirmed that these semantic categories could be detected in single trials, with within-session predictive accuracies of 80-90%. However cross-session prediction (learning from auditory-task data to classify data from the written-word-task, or vice versa) suffered from a performance penalty, achieving 65-75% (still individually significant at p « 0.05). We carried out several follow-on analyses to investigate the reason for this shortfall, concluding that distributional differences in neither time nor space alone could account for it. Rather, combined spatio-temporal patterns of activity need to be identified for successful cross-session learning, and this suggests that feature selection strategies could be modified to take advantage of this.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we propose a novel automated glaucoma detection framework for mass-screening that operates on inexpensive retinal cameras. The proposed methodology is based on the assumption that discriminative features for glaucoma diagnosis can be extracted from the optical nerve head structures,
such as the cup-to-disc ratio or the neuro-retinal rim variation. After automatically segmenting the cup and optical disc, these features are feed into a machine learning classifier. Experiments were performed using two different datasets and from the obtained results the proposed technique provides
better performance than approaches based on appearance. A main advantage of our approach is that it only requires a few training samples to provide high accuracy over several different glaucoma stages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smart management of maintenances has become fundamental in manufacturing environments in order to decrease downtime and costs associated with failures. Predictive Maintenance (PdM) systems based on Machine Learning (ML) techniques have the possibility with low added costs of drastically decrease failures-related expenses; given the increase of availability of data and capabilities of ML tools, PdM systems are becoming really popular, especially in semiconductor manufacturing. A PdM module based on Classification methods is presented here for the prediction of integral type faults that are related to machine usage and stress of equipment parts. The module has been applied to an important class of semiconductor processes, ion-implantation, for the prediction of ion-source tungsten filament breaks. The PdM has been tested on a real production dataset. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a Bayesian learning setting, the posterior distribution of a predictive model arises from a trade-off between its prior distribution and the conditional likelihood of observed data. Such distribution functions usually rely on additional hyperparameters which need to be tuned in order to achieve optimum predictive performance; this operation can be efficiently performed in an Empirical Bayes fashion by maximizing the posterior marginal likelihood of the observed data. Since the score function of this optimization problem is in general characterized by the presence of local optima, it is necessary to resort to global optimization strategies, which require a large number of function evaluations. Given that the evaluation is usually computationally intensive and badly scaled with respect to the dataset size, the maximum number of observations that can be treated simultaneously is quite limited. In this paper, we consider the case of hyperparameter tuning in Gaussian process regression. A straightforward implementation of the posterior log-likelihood for this model requires O(N^3) operations for every iteration of the optimization procedure, where N is the number of examples in the input dataset. We derive a novel set of identities that allow, after an initial overhead of O(N^3), the evaluation of the score function, as well as the Jacobian and Hessian matrices, in O(N) operations. We prove how the proposed identities, that follow from the eigendecomposition of the kernel matrix, yield a reduction of several orders of magnitude in the computation time for the hyperparameter optimization problem. Notably, the proposed solution provides computational advantages even with respect to state of the art approximations that rely on sparse kernel matrices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The momentum term has long been used in machine learning algorithms, especially back-propagation, to improve their speed of convergence. In this paper, we derive an expression to prove the O(1/k2) convergence rate of the online gradient method, with momentum type updates, when the individual gradients are constrained by a growth condition. We then apply these type of updates to video background modelling by using it in the update equations of the Region-based Mixture of Gaussians algorithm. Extensive evaluations are performed on both simulated data, as well as challenging real world scenarios with dynamic backgrounds, to show that these regularised updates help the mixtures converge faster than the conventional approach and consequently improve the algorithm’s performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the semiconductor manufacturing environment it is very important to understand which factors have the most impact on process outcomes and to control them accordingly. This is usually achieved through design of experiments at process start-up and long term observation of production. As such it relies heavily on the expertise of the process engineer. In this work, we present an automatic approach to extracting useful insights about production processes and equipment based on state-of-the-art Machine Learning techniques. The main goal of this activity is to provide tools to process engineers to accelerate the learning-by-observation phase of process analysis. Using a Metal Deposition process as an example, we highlight various ways in which the extracted information can be employed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we presentAgwan (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the Agwanmodel to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to address road safety effectively, it is essential to understand all the factors, which
attribute to the occurrence of a road collision. This is achieved through road safety
assessment measures, which are primarily based on historical crash data. Recent advances
in uncertain reasoning technology have led to the development of robust machine learning
techniques, which are suitable for investigating road traffic collision data. These techniques
include supervised learning (e.g. SVM) and unsupervised learning (e.g. Cluster Analysis).
This study extends upon previous research work, carried out in Coll et al. [3], which
proposed a non-linear aggregation framework for identifying temporal and spatial hotspots.
The results from Coll et al. [3] identified Lisburn area as the hotspot, in terms of road safety,
in Northern Ireland. This study aims to use Cluster Analysis, to investigate and highlight any
hidden patterns associated with collisions that occurred in Lisburn area, which in turn, will
provide more clarity in the causation factors so that appropriate countermeasures can be put
in place.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, wide-field sky surveys providing deep multi-band imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SN): systematic light curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 years and classified using both spectroscopy and machine learning-based photometric techniques. We develop and apply a new Bayesian model for the full multi-band evolution of each light curve in the sample. We find no evidence of a sub-population of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for supernova cosmology, offering a standardizable candle good to an intrinsic scatter of 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light curve properties and an expanded grid of progenitor properties, are needed to enable robust progenitor inferences from multi-band light curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide field transient searches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detection of adulteration of non-processed vegetable oil with lesser value seed oils (classic example is hazelnut in virgin olive oil) has been in the centre of scientific attention for many years and several chemical methods were proposed. The recent EC Regulation 1169/2011, however, introduces necessity for different analytical method in a more complicated matrix. From the end of 2014, food businesses required to declare the composition of the refined oil mixture in the food product label. This creates a gap since there is no analytical method currently available to perform such analysis. In the first phase the work focused on 100% oil blends of various oil species of palm oil (and derivatives), sunflower and rapeseed oil before expanding to foodstuffs. Chromatographic methods remain highly relevant although suffer from various limitations which derive from natural compositional variation. Modern multivariate techniques based on machine learning algorithms, however, when applied in FTIR, Raman spectroscopic data have a strong potential in tackling the problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work examines the conformational ensemble involved in β-hairpin folding by means of advanced molecular dynamics simulations and dimensionality reduction. A fully atomistic description of the protein and the surrounding solvent molecules is used, and this complex energy landscape is sampled by means of parallel tempering metadynamics simulations. The ensemble of configurations explored is analyzed using the recently proposed sketch-map algorithm. Further simulations allow us to probe how mutations affect the structures adopted by this protein. We find that many of the configurations adopted by a mutant are the same as those adopted by the wild-type protein. Furthermore, certain mutations destabilize secondary-structure-containing configurations by preventing the formation of hydrogen bonds or by promoting the formation of new intramolecular contacts. Our analysis demonstrates that machine-learning techniques can be used to study the energy landscapes of complex molecules and that the visualizations that are generated in this way provide a natural basis for examining how the stabilities of particular configurations of the molecule are affected by factors such as temperature or structural mutations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a new anytime algorithm for the marginal MAP problem in graphical models of bounded treewidth. We show asymptotic convergence and theoretical error bounds for any fixed step. Experiments show that it compares well to a state-of-the-art systematic search algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cloud data centres are critical business infrastructures and the fastest growing service providers. Detecting anomalies in Cloud data centre operation is vital. Given the vast complexity of the data centre system software stack, applications and workloads, anomaly detection is a challenging endeavour. Current tools for detecting anomalies often use machine learning techniques, application instance behaviours or system metrics distribu- tion, which are complex to implement in Cloud computing environments as they require training, access to application-level data and complex processing. This paper presents LADT, a lightweight anomaly detection tool for Cloud data centres that uses rigorous correlation of system metrics, implemented by an efficient corre- lation algorithm without need for training or complex infrastructure set up. LADT is based on the hypothesis that, in an anomaly-free system, metrics from data centre host nodes and virtual machines (VMs) are strongly correlated. An anomaly is detected whenever correlation drops below a threshold value. We demonstrate and evaluate LADT using a Cloud environment, where it shows that the hosting node I/O operations per second (IOPS) are strongly correlated with the aggregated virtual machine IOPS, but this correlation vanishes when an application stresses the disk, indicating a node-level anomaly.