951 resultados para Local productive arrangement intense culture
Resumo:
Eight species of ectomycorrhizal (ECM) fungi in the genera Amanita. Gymnoboletus, Lactarius, and Russula were isolated from subtropical plant communities in eastem Australia. Two species were isolated from each of rainforest, Nothofagus forest, Eucalyptus forest, and Eucalyptus dominated wallum (heath) forest. These communities differ strongly in their soluble soil nitrogen (N) composition. The ability of the fungi to use inorganic (nitrate, ammonium) and organic (amide, peptide, protein) nitrogen sources was determined. As the fungi did not grow in liquid culture, a 'floating culture' technique was devised that allows hyphal growth on a screen floating on liquid medium. With some exceptions, fungal biomass production in floating culture closely reflected fungal growth on solid media assessed by total colony glucosamine content. Most isolates grown in floating culture had similar glucosamine concentrations on all N sources, with isolate specific concentrations ranging from 6 to 12 mug glucosamine g(-1) DW. However, Russula spp. had up to 1.7-fold higher glucosamine concentrations when growing with glutamine or ammonium compared to nitrate, glutathione or protein. Floating cultures supplied with 0.5, 1.5. 4.5, or 10 mm N mostly produced greatest biomass with 4.5 mM N. In vitro nitrate reductase activity (NRA) ranged from very low (0.03 mumol NO2- g(-1) fw h(-1)) in Russula sp. (wallum) to high (2.16 mumol NO2- g(-1) fw h(-1)) in Gymnoboletus sp. (rainforest) and mirrored the fungi's ability to use nitrate as a N source. All Russula spp. (wallum, Nothofagus and Eucalyptus forests), Lactarills sp, (rainforest) and.4manita sp. (wallum) utilized ammonium and glutamine but had little ability to use other N sources. In contrast,Amanita species (Nothofagus and Eucalyptus forests) grew on all N sources but produced most biomass with ammonium and glutamine. Only Gymnoboletus sp. (rainforest) showed similar growth with nitrate and ammonium as N sources. Fungal N source use was not associated with taxonomic groups, but is discussed in the context of soil N sources in the different habitats.
Resumo:
Cytochromes P450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiologic and xenobiotic compounds in eukaryotes and prokaryotes. Studies on bacterial P450s, particularly those involved in monoterpene oxidation, have provided an integral contribution to our understanding of these proteins, away from the problems encountered with eukaryotic forms. We report here a novel cytochrome P450 (P450(cin), CYP176A1) purified from a strain of Citrobacter braakii that is capable of using cineole 1 as its sole source of carbon and energy. This enzyme has been purified to homogeneity and the amino acid sequences of three tryptic peptides determined. By using this information, a PCR-based cloning strategy was developed that allowed the isolation of a 4-kb DNA fragment containing the cytochrome P450(cin) gene (cinA). Sequencing revealed three open reading frames that were identified on the basis of sequence homology as a cytochrome P450, an NADPH-dependent flavodoxin/ferrodoxin reductase, and a flavodoxin. This arrangement suggests that P450(cin) may be the first isolated P450 to use a flavodoxin as its natural redox partner. Sequencing also identified the unprecedented substitution of a highly conserved, catalytically, important active site threonine with an asparagine residue. The P450 gene was subcloned and heterologously expressed in Escherichia coli at similar to2000 nmol/liter of original culture, and purification was achieved by standard protocols. Postulating the native E. coli flavodoxin/flavodoxin reductase system might mimic the natural redox partners of P450,in, it was expressed in E. coli in the presence of cineole 1. A product was formed in vivo that was tentatively identified by gas chromatography-mass spectrometry as 2-hydroxycineole 2. Examination of P450(cin) by UV-visible spectroscopy revealed typical spectra characteristic of P450s, a high affinity for cineole 1 (K-D = 0.7 mum), and a large spin state change of the heme iron associated with binding of cineole 1. These facts support the hypothesis that cineole 1 is the natural substrate for this enzyme and that P450(cin) catalyzes the initial monooxygenation of cineole 1 biodegradation. This constitutes the first characterization of an enzyme involved in this pathway.
Resumo:
This paper characterizes when a Delone set X in R-n is an ideal crystal in terms of restrictions on the number of its local patches of a given size or on the heterogeneity of their distribution. For a Delone set X, let N-X (T) count the number of translation-inequivalent patches of radius T in X and let M-X (T) be the minimum radius such that every closed ball of radius M-X(T) contains the center of a patch of every one of these kinds. We show that for each of these functions there is a gap in the spectrum of possible growth rates between being bounded and having linear growth, and that having sufficiently slow linear growth is equivalent to X being an ideal crystal. Explicitly, for N-X (T), if R is the covering radius of X then either N-X (T) is bounded or N-X (T) greater than or equal to T/2R for all T > 0. The constant 1/2R in this bound is best possible in all dimensions. For M-X(T), either M-X(T) is bounded or M-X(T) greater than or equal to T/3 for all T > 0. Examples show that the constant 1/3 in this bound cannot be replaced by any number exceeding 1/2. We also show that every aperiodic Delone set X has M-X(T) greater than or equal to c(n)T for all T > 0, for a certain constant c(n) which depends on the dimension n of X and is > 1/3 when n > 1.
Resumo:
We present a novel maximum-likelihood-based algorithm for estimating the distribution of alignment scores from the scores of unrelated sequences in a database search. Using a new method for measuring the accuracy of p-values, we show that our maximum-likelihood-based algorithm is more accurate than existing regression-based and lookup table methods. We explore a more sophisticated way of modeling and estimating the score distributions (using a two-component mixture model and expectation maximization), but conclude that this does not improve significantly over simply ignoring scores with small E-values during estimation. Finally, we measure the classification accuracy of p-values estimated in different ways and observe that inaccurate p-values can, somewhat paradoxically, lead to higher classification accuracy. We explain this paradox and argue that statistical accuracy, not classification accuracy, should be the primary criterion in comparisons of similarity search methods that return p-values that adjust for target sequence length.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? We provide an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling n-qubit Hamiltonian and local unitary operations. It follows that universal quantum computation can be performed using any entangling interaction and local unitary operations.
Resumo:
Within the skeletal muscle cell at the onset of muscular contraction, phosphocreatine (PCr) represents the most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As a result, its concentration can be reduced to less than 30% of resting levels during intense exercise. As a fall in the level of PCr appears to adversely affect muscle contraction, and therefore power output in a subsequent bout, maximising the rate of PCr resynthesis during a brief recovery period will be of benefit to an athlete involved in activities which demand intermittent exercise. Although this resynthesis process simply involves the rephosphorylation of creatine by aerobically produced ATP (with the release of protons), it has both a fast and slow component, each proceeding at a rate that is controlled by different components of the creatine kinase equilibrium. The initial fast phase appears to proceed at a rate independent of muscle pH. Instead, its rate appears to be controlled by adenosine diphosphate (ADP) levels; either directly through its free cytosolic concentration, or indirectly, through its effect on the free energy of ATP hydrolysis. Once this fast phase of recovery is complete, there is a secondary slower phase that appears almost certainly rate-dependant on the return of the muscle cell to homeostatic intracellular pH. Given the importance of oxidative phosphorylation in this resynthesis process, those individuals with an elevated aerobic power should be able to resynthesise PCr at a more rapid rate than their sedentary counterparts. However, results from studies that have used phosphorus nuclear magnetic resonance (P-31-NMR) spectroscopy, have been somewhat inconsistent with respect to the relationship between aerobic power and PCr recovery following intense exercise. Because of the methodological constraints that appear to have limited a number of these studies, further research in this area is warranted.
Resumo:
Rapid accumulation of few polyhedra (FP) mutants was detected during serial passaging of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) in cell culture. 100% FP infected cells were observed by passage 6. The specific yield decreased from 178 polyhedra per cell at passage 2 to two polyhedra per cell at passage 6. The polyhedra at passage 6 were not biologically active, with a 28-fold reduction in potency compared to passage 3. Electron microscopy studies revealed that very few polyhedra were produced in an FP infected cell (< 10 polyhedra per section) and in most cases these polyhedra contained no virions. A specific failure in the intranuclear nucleocapsid envelopment process in the FP infected cells, leading to the accumulation of naked nucleocapsids, was observed. Genomic restriction endonuclease digestion profiles of budded virus DNA from all passages did not indicate any large DNA insertions or deletions that are often associated with such FP phenotypes for the extensively studied Autographa californica nucleopolyhedrovirus and Gaileria mellonella nucleopolyhedrovirus. Within an HaSNPV 25K FP gene homologue, a single base-pair insertion (an adenine residue) within a region of repetitive sequences (seven adenine residues) was identified in one plaque-purified HaSNPV FP mutant. Furthermore, the sequences obtained from individual clones of the 25KFP gene PCR products of a late passage revealed point mutations or single base-pair insertions occurring throughout the gene. The mechanism of FP mutation in HaSNPV is likely similar to that seen for Lymantria dispar nucleopolyhedrovirus, involving point mutations or small insertions/deletions of the 25K FP gene.
Resumo:
This paper draws on data from a group case study of women in higher education management in Hong Kong, Singapore, Malaysia, and Thailand. I investigate culture-specific dimensions of what the Western literature has conceptualized as glass ceiling impediments to women's career advancement in higher education. I frame my argument within recent debates about globalization and glocalization to show how the push-pull and disjunctive dynamics of globalization are experienced in local sites by social actors who traverse global flows and yet remain tethered to local discourses, values, and practices. All of the women in this study were trained in Western universities and are fluent English speakers, world-class experts in their fields, well versed with equity discourses, and globally connected on international nongovernment organization (NGO) and academic circuits. They are indeed global cosmopolitans. And yet their testimonies indicate that so-called Asian values and religious-cultural ideologies demand the enactment of a specific construct of Asian femininity that militates against meritocratic equality and academic career aspirations to senior management levels. Despite the global nature of the University and increasing global flows of academics, students, and knowledge, the politics of academic glass ceilings are not universal but always locally inflected with cultural values and norms. As such, the politics of disadvantage for women in higher education require local and situated analyses in the context of global patterns of the educational status Of women and the changing nature of higher education.