850 resultados para Local classification method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Web 2.0 applications enabled users to classify information resources using their own vocabularies. The bottom-up nature of these user-generated classification systems have turned them into interesting knowledge sources, since they provide a rich terminology generated by potentially large user communities. Previous research has shown that it is possible to elicit some emergent semantics from the aggregation of individual classifications in these systems. However the generation of ontologies from them is still an open research problem. In this thesis we address the problem of how to tap into user-generated classification systems for building domain ontologies. Our objective is to design a method to develop domain ontologies from user-generated classifications systems. To do so, we rely on ontologies in the Web of Data to formalize the semantics of the knowledge collected from the classification system. Current ontology development methodologies have recognized the importance of reusing knowledge from existing resources. Thus, our work is framed within the NeOn methodology scenario for building ontologies by reusing and reengineering non-ontological resources. The main contributions of this work are: An integrated method to develop ontologies from user-generated classification systems. With this method we extract a domain terminology from the classification system and then we formalize the semantics of this terminology by reusing ontologies in the Web of Data. Identification and adaptation of existing techniques for implementing the activities in the method so that they can fulfill the requirements of each activity. A novel study about emerging semantics in user-generated lists. Resumen La web 2.0 permitió a los usuarios clasificar recursos de información usando su propio vocabulario. Estos sistemas de clasificación generados por usuarios son recursos interesantes para la extracción de conocimiento debido principalmente a que proveen una extensa terminología generada por grandes comunidades de usuarios. Se ha demostrado en investigaciones previas que es posible obtener una semántica emergente de estos sistemas. Sin embargo la generación de ontologías a partir de ellos es todavía un problema de investigación abierto. Esta tesis trata el problema de cómo aprovechar los sistemas de clasificación generados por usuarios en la construcción de ontologías de dominio. Así el objetivo de la tesis es diseñar un método para desarrollar ontologías de dominio a partir de sistemas de clasificación generados por usuarios. El método propuesto reutiliza conceptualizaciones existentes en ontologías publicadas en la Web de Datos para formalizar la semántica del conocimiento que se extrae del sistema de clasificación. Por tanto, este trabajo está enmarcado dentro del escenario para desarrollar ontologías mediante la reutilización y reingeniería de recursos no ontológicos que se ha definido en la Metodología NeOn. Las principales contribuciones de este trabajo son: Un método integrado para desarrollar una ontología de dominio a partir de sistemas de clasificación generados por usuarios. En este método se extrae una terminología de dominio del sistema de clasificación y posteriormente se formaliza su semántica reutilizando ontologías en la Web de Datos. La identificación y adaptación de un conjunto de técnicas para implementar las actividades propuestas en el método de tal manera que puedan cumplir automáticamente los requerimientos de cada actividad. Un novedoso estudio acerca de la semántica emergente en las listas generadas por usuarios en la Web.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Due to recent scientific and technological advances in information sys¬tems, it is now possible to perform almost every application on a mobile device. The need to make sense of such devices more intelligent opens an opportunity to design data mining algorithm that are able to autonomous execute in local devices to provide the device with knowledge. The problem behind autonomous mining deals with the proper configuration of the algorithm to produce the most appropriate results. Contextual information together with resource information of the device have a strong impact on both the feasibility of a particu¬lar execution and on the production of the proper patterns. On the other hand, performance of the algorithm expressed in terms of efficacy and efficiency highly depends on the features of the dataset to be analyzed together with values of the parameters of a particular implementation of an algorithm. However, few existing approaches deal with autonomous configuration of data mining algorithms and in any case they do not deal with contextual or resources information. Both issues are of particular significance, in particular for social net¬works application. In fact, the widespread use of social networks and consequently the amount of information shared have made the need of modeling context in social application a priority. Also the resource consumption has a crucial role in such platforms as the users are using social networks mainly on their mobile devices. This PhD thesis addresses the aforementioned open issues, focusing on i) Analyzing the behavior of algorithms, ii) mapping contextual and resources information to find the most appropriate configuration iii) applying the model for the case of a social recommender. Four main contributions are presented: - The EE-Model: is able to predict the behavior of a data mining algorithm in terms of resource consumed and accuracy of the mining model it will obtain. - The SC-Mapper: maps a situation defined by the context and resource state to a data mining configuration. - SOMAR: is a social activity (event and informal ongoings) recommender for mobile devices. - D-SOMAR: is an evolution of SOMAR which incorporates the configurator in order to provide updated recommendations. Finally, the experimental validation of the proposed contributions using synthetic and real datasets allows us to achieve the objectives and answer the research questions proposed for this dissertation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Analysis of exhaled volatile organic compounds (VOCs) in breath is an emerging approach for cancer diagnosis, but little is known about its potential use as a biomarker for colorectal cancer (CRC). We investigated whether a combination of VOCs could distinct CRC patients from healthy volunteers. Methods: In a pilot study, we prospectively analyzed breath exhalations of 38 CRC patient and 43 healthy controls all scheduled for colonoscopy, older than 50 in the average-risk category. The samples were ionized and analyzed using a Secondary ElectroSpray Ionization (SESI) coupled with a Time-of-Flight Mass Spectrometer (SESI-MS). After a minimum of 2 hours fasting, volunteers deeply exhaled into the system. Each test requires three soft exhalations and takes less than ten minutes. No breath condensate or collection are required and VOCs masses are detected in real time, also allowing for a spirometric profile to be analyzed along with the VOCs. A new sampling system precludes ambient air from entering the system, so background contamination is reduced by an overall factor of ten. Potential confounding variables from the patient or the environment that could interfere with results were analyzed. Results: 255 VOCs, with masses ranging from 30 to 431 Dalton have been identified in the exhaled breath. Using a classification technique based on the ROC curve for each VOC, a set of 9 biomarkers discriminating the presence of CRC from healthy volunteers was obtained, showing an average recognition rate of 81.94%, a sensitivity of 87.04% and specificity of 76.85%. Conclusions: A combination of cualitative and cuantitative analysis of VOCs in the exhaled breath could be a powerful diagnostic tool for average-risk CRC population. These results should be taken with precaution, as many endogenous or exogenous contaminants could interfere as confounding variables. On-line analysis with SESI-MS is less time-consuming and doesn’t need sample preparation. We are recruiting in a new pilot study including breath cleaning procedures and spirometric analysis incorporated into the postprocessing algorithms, to better control for confounding variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the problem of determining the position of beacon nodes in Local Positioning Systems (LPSs), for which there are no inter-beacon distance measurements available and neither the mobile node nor any of the stationary nodes have positioning or odometry information. The common solution is implemented using a mobile node capable of measuring its distance to the stationary beacon nodes within a sensing radius. Many authors have implemented heuristic methods based on optimization algorithms to solve the problem. However, such methods require a good initial estimation of the node positions in order to find the correct solution. In this paper we present a new method to calculate the inter-beacon distances, and hence the beacons positions, based in the linearization of the trilateration equations into a closed-form solution which does not require any approximate initial estimation. The simulations and field evaluations show a good estimation of the beacon node positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resumen El diseño de sistemas ópticos, entendido como un arte por algunos, como una ciencia por otros, se ha realizado durante siglos. Desde los egipcios hasta nuestros días los sistemas de formación de imagen han ido evolucionando así como las técnicas de diseño asociadas. Sin embargo ha sido en los últimos 50 años cuando las técnicas de diseño han experimentado su mayor desarrollo y evolución, debido, en parte, a la aparición de nuevas técnicas de fabricación y al desarrollo de ordenadores cada vez más potentes que han permitido el cálculo y análisis del trazado de rayos a través de los sistemas ópticos de forma rápida y eficiente. Esto ha propiciado que el diseño de sistemas ópticos evolucione desde los diseños desarrollados únicamente a partir de la óptica paraxial hasta lo modernos diseños realizados mediante la utilización de diferentes técnicas de optimización multiparamétrica. El principal problema con el que se encuentra el diseñador es que las diferentes técnicas de optimización necesitan partir de un diseño inicial el cual puede fijar las posibles soluciones. Dicho de otra forma, si el punto de inicio está lejos del mínimo global, o diseño óptimo para las condiciones establecidas, el diseño final puede ser un mínimo local cerca del punto de inicio y lejos del mínimo global. Este tipo de problemática ha llevado al desarrollo de sistemas globales de optimización que cada vez sean menos sensibles al punto de inicio de la optimización. Aunque si bien es cierto que es posible obtener buenos diseños a partir de este tipo de técnicas, se requiere de muchos intentos hasta llegar a la solución deseada, habiendo un entorno de incertidumbre durante todo el proceso, puesto que no está asegurado el que se llegue a la solución óptima. El método de las Superficies Múltiples Simultaneas (SMS), que nació como una herramienta de cálculo de concentradores anidólicos, se ha demostrado como una herramienta también capaz utilizarse para el diseño de sistemas ópticos formadores de imagen, aunque hasta la fecha se ha utilizado para el diseño puntual de sistemas de formación de imagen. Esta tesis tiene por objeto presentar el SMS como un método que puede ser utilizado de forma general para el diseño de cualquier sistema óptico de focal fija o v afocal con un aumento definido así como una herramienta que puede industrializarse para ayudar al diseñador a afrontar de forma sencilla el diseño de sistemas ópticos complejos. Esta tesis está estructurada en cinco capítulos: El capítulo 1, es un capítulo de fundamentos donde se presentan los conceptos fundamentales necesarios para que el lector, aunque no posea una gran base en óptica formadora de imagen, pueda entender los planteamientos y resultados que se presentan en el resto de capítulos El capitulo 2 aborda el problema de la optimización de sistemas ópticos, donde se presenta el método SMS como una herramienta idónea para obtener un punto de partida para el proceso de optimización. Mediante un ejemplo aplicado se demuestra la importancia del punto de partida utilizado en la solución final encontrada. Además en este capítulo se presentan diferentes técnicas que permiten la interpolación y optimización de las superficies obtenidas a partir de la aplicación del SMS. Aunque en esta tesis se trabajará únicamente utilizando el SMS2D, se presenta además un método para la interpolación y optimización de las nubes de puntos obtenidas a partir del SMS3D basado en funciones de base radial (RBF). En el capítulo 3 se presenta el diseño, fabricación y medidas de un objetivo catadióptrico panorámico diseñado para trabajar en la banda del infrarrojo lejano (8-12 μm) para aplicaciones de vigilancia perimetral. El objetivo presentado se diseña utilizando el método SMS para tres frentes de onda de entrada utilizando cuatro superficies. La potencia del método de diseño utilizado se hace evidente en la sencillez con la que este complejo sistema se diseña. Las imágenes presentadas demuestran cómo el prototipo desarrollado cumple a la perfección su propósito. El capítulo 4 aborda el problema del diseño de sistemas ópticos ultra compactos, se introduce el concepto de sistemas multicanal, como aquellos sistemas ópticos compuestos por una serie de canales que trabajan en paralelo. Este tipo de sistemas resultan particularmente idóneos para él diseño de sistemas afocales. Se presentan estrategias de diseño para sistemas multicanal tanto monocromáticos como policromáticos. Utilizando la novedosa técnica de diseño que en este capítulo se presenta el diseño de un telescopio de seis aumentos y medio. En el capítulo 5 se presenta una generalización del método SMS para rayos meridianos. En este capítulo se presenta el algoritmo que debe utilizarse para el diseño de cualquier sistema óptico de focal fija. La denominada optimización fase 1 se vi introduce en el algoritmo presentado de forma que mediante el cambio de las condiciones iníciales del diseño SMS que, aunque el diseño se realice para rayos meridianos, los rayos skew tengan un comportamiento similar. Para probar la potencia del algoritmo desarrollado se presenta un conjunto de diseños con diferente número de superficies. La estabilidad y potencia del algoritmo se hace evidente al conseguirse por primera vez el diseño de un sistema de seis superficies diseñado por SMS. vii Abstract The design of optical systems, considered an art by some and a science by others, has been developed for centuries. Imaging optical systems have been evolving since Ancient Egyptian times, as have design techniques. Nevertheless, the most important developments in design techniques have taken place over the past 50 years, in part due to the advances in manufacturing techniques and the development of increasingly powerful computers, which have enabled the fast and efficient calculation and analysis of ray tracing through optical systems. This has led to the design of optical systems evolving from designs developed solely from paraxial optics to modern designs created by using different multiparametric optimization techniques. The main problem the designer faces is that the different optimization techniques require an initial design which can set possible solutions as a starting point. In other words, if the starting point is far from the global minimum or optimal design for the set conditions, the final design may be a local minimum close to the starting point and far from the global minimum. This type of problem has led to the development of global optimization systems which are increasingly less sensitive to the starting point of the optimization process. Even though it is possible to obtain good designs from these types of techniques, many attempts are necessary to reach the desired solution. This is because of the uncertain environment due to the fact that there is no guarantee that the optimal solution will be obtained. The Simultaneous Multiple Surfaces (SMS) method, designed as a tool to calculate anidolic concentrators, has also proved useful for the design of image-forming optical systems, although until now it has occasionally been used for the design of imaging systems. This thesis aims to present the SMS method as a technique that can be used in general for the design of any optical system, whether with a fixed focal or an afocal with a defined magnification, and also as a tool that can be commercialized to help designers in the design of complex optical systems. The thesis is divided into five chapters. Chapter 1 establishes the basics by presenting the fundamental concepts which the reader needs to acquire, even if he/she doesn‟t have extensive knowledge in the field viii of image-forming optics, in order to understand the steps taken and the results obtained in the following chapters. Chapter 2 addresses the problem of optimizing optical systems. Here the SMS method is presented as an ideal tool to obtain a starting point for the optimization process. The importance of the starting point for the final solution is demonstrated through an example. Additionally, this chapter introduces various techniques for the interpolation and optimization of the surfaces obtained through the application of the SMS method. Even though in this thesis only the SMS2D method is used, we present a method for the interpolation and optimization of clouds of points obtained though the SMS3D method, based on radial basis functions (RBF). Chapter 3 presents the design, manufacturing and measurement processes of a catadioptric panoramic lens designed to work in the Long Wavelength Infrared (LWIR) (8-12 microns) for perimeter surveillance applications. The lens presented is designed by using the SMS method for three input wavefronts using four surfaces. The powerfulness of the design method used is revealed through the ease with which this complex system is designed. The images presented show how the prototype perfectly fulfills its purpose. Chapter 4 addresses the problem of designing ultra-compact optical systems. The concept of multi-channel systems, such as optical systems composed of a series of channels that work in parallel, is introduced. Such systems are especially suitable for the design of afocal systems. We present design strategies for multichannel systems, both monochromatic and polychromatic. A telescope designed with a magnification of six-and-a-half through the innovative technique exposed in this chapter is presented. Chapter 5 presents a generalization of the SMS method for meridian rays. The algorithm to be used for the design of any fixed focal optics is revealed. The optimization known as phase 1 optimization is inserted into the algorithm so that, by changing the initial conditions of the SMS design, the skew rays have a similar behavior, despite the design being carried out for meridian rays. To test the power of the developed algorithm, a set of designs with a different number of surfaces is presented. The stability and strength of the algorithm become apparent when the first design of a system with six surfaces if obtained through the SMS method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 12 January 2010, an earthquake hit the city of Port-au-Prince, capital of Haiti. The earthquake reached a magnitude Mw 7.0 and the epicenter was located near the town of Léogâne, approximately 25 km west of the capital. The earthquake occurred in the boundary region separating the Caribbean plate and the North American plate. This plate boundary is dominated by left-lateral strike slip motion and compression, and accommodates about 20 mm/y slip, with the Caribbean plate moving eastward with respect to the North American plate (DeMets et al., 2000). Initially the location and focal mechanism of the earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillo-Plantain Garden fault system (EPGFZ), however Hayes et al., (2010) combined seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process involved slip on multiple faults. Besides, the authors showed that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the EPGFZ. In December 2010, a Spanish cooperation project financed by the Politechnical University of Madrid started with a clear objective: Evaluation of seismic hazard and risk in Haiti and its application to the seismic design, urban planning, emergency and resource management. One of the tasks of the project was devoted to vulnerability assessment of the current building stock and the estimation of seismic risk scenarios. The study was carried out by following the capacity spectrum method as implemented in the software SELENA (Molina et al., 2010). The method requires a detailed classification of the building stock in predominant building typologies (according to the materials in the structure and walls, number of stories and age of construction) and the use of the building (residential, commercial, etc.). Later, the knowledge of the soil characteristics of the city and the simulation of a scenario earthquake will provide the seismic risk scenarios (damaged buildings). The initial results of the study show that one of the highest sources of uncertainties comes from the difficulty of achieving a precise building typologies classification due to the craft construction without any regulations. Also it is observed that although the occurrence of big earthquakes usually helps to decrease the vulnerability of the cities due to the collapse of low quality buildings and the reconstruction of seismically designed buildings, in the case of Port-au-Prince the seismic risk in most of the districts remains high, showing very vulnerable areas. Therefore the local authorities have to drive their efforts towards the quality control of the new buildings, the reinforcement of the existing building stock, the establishment of seismic normatives and the development of emergency planning also through the education of the population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objeto de esta Tesis doctoral es el desarrollo de una metodologia para la deteccion automatica de anomalias a partir de datos hiperespectrales o espectrometria de imagen, y su cartografiado bajo diferentes condiciones tipologicas de superficie y terreno. La tecnologia hiperespectral o espectrometria de imagen ofrece la posibilidad potencial de caracterizar con precision el estado de los materiales que conforman las diversas superficies en base a su respuesta espectral. Este estado suele ser variable, mientras que las observaciones se producen en un numero limitado y para determinadas condiciones de iluminacion. Al aumentar el numero de bandas espectrales aumenta tambien el numero de muestras necesarias para definir espectralmente las clases en lo que se conoce como Maldicion de la Dimensionalidad o Efecto Hughes (Bellman, 1957), muestras habitualmente no disponibles y costosas de obtener, no hay mas que pensar en lo que ello implica en la Exploracion Planetaria. Bajo la definicion de anomalia en su sentido espectral como la respuesta significativamente diferente de un pixel de imagen respecto de su entorno, el objeto central abordado en la Tesis estriba primero en como reducir la dimensionalidad de la informacion en los datos hiperespectrales, discriminando la mas significativa para la deteccion de respuestas anomalas, y segundo, en establecer la relacion entre anomalias espectrales detectadas y lo que hemos denominado anomalias informacionales, es decir, anomalias que aportan algun tipo de informacion real de las superficies o materiales que las producen. En la deteccion de respuestas anomalas se asume un no conocimiento previo de los objetivos, de tal manera que los pixeles se separan automaticamente en funcion de su informacion espectral significativamente diferenciada respecto de un fondo que se estima, bien de manera global para toda la escena, bien localmente por segmentacion de la imagen. La metodologia desarrollada se ha centrado en la implicacion de la definicion estadistica del fondo espectral, proponiendo un nuevo enfoque que permite discriminar anomalias respecto fondos segmentados en diferentes grupos de longitudes de onda del espectro, explotando la potencialidad de separacion entre el espectro electromagnetico reflectivo y emisivo. Se ha estudiado la eficiencia de los principales algoritmos de deteccion de anomalias, contrastando los resultados del algoritmo RX (Reed and Xiaoli, 1990) adoptado como estandar por la comunidad cientifica, con el metodo UTD (Uniform Targets Detector), su variante RXD-UTD, metodos basados en subespacios SSRX (Subspace RX) y metodo basados en proyecciones de subespacios de imagen, como OSPRX (Orthogonal Subspace Projection RX) y PP (Projection Pursuit). Se ha desarrollado un nuevo metodo, evaluado y contrastado por los anteriores, que supone una variacion de PP y describe el fondo espectral mediante el analisis discriminante de bandas del espectro electromagnetico, separando las anomalias con el algortimo denominado Detector de Anomalias de Fondo Termico o DAFT aplicable a sensores que registran datos en el espectro emisivo. Se han evaluado los diferentes metodos de deteccion de anomalias en rangos del espectro electromagnetico del visible e infrarrojo cercano (Visible and Near Infrared-VNIR), infrarrojo de onda corta (Short Wavelenght Infrared-SWIR), infrarrojo medio (Meadle Infrared-MIR) e infrarrojo termico (Thermal Infrared-TIR). La respuesta de las superficies en las distintas longitudes de onda del espectro electromagnetico junto con su entorno, influyen en el tipo y frecuencia de las anomalias espectrales que puedan provocar. Es por ello que se han utilizado en la investigacion cubos de datos hiperepectrales procedentes de los sensores aeroportados cuya estrategia y diseno en la construccion espectrometrica de la imagen difiere. Se han evaluado conjuntos de datos de test de los sensores AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) y MASTER (MODIS/ASTER Simulator). Se han disenado experimentos sobre ambitos naturales, urbanos y semiurbanos de diferente complejidad. Se ha evaluado el comportamiento de los diferentes detectores de anomalias a traves de 23 tests correspondientes a 15 areas de estudio agrupados en 6 espacios o escenarios: Urbano - E1, Semiurbano/Industrial/Periferia Urbana - E2, Forestal - E3, Agricola - E4, Geologico/Volcanico - E5 y Otros Espacios Agua, Nubes y Sombras - E6. El tipo de sensores evaluados se caracteriza por registrar imagenes en un amplio rango de bandas, estrechas y contiguas, del espectro electromagnetico. La Tesis se ha centrado en el desarrollo de tecnicas que permiten separar y extraer automaticamente pixeles o grupos de pixeles cuya firma espectral difiere de manera discriminante de las que tiene alrededor, adoptando para ello como espacio muestral parte o el conjunto de las bandas espectrales en las que ha registrado radiancia el sensor hiperespectral. Un factor a tener en cuenta en la investigacion ha sido el propio instrumento de medida, es decir, la caracterizacion de los distintos subsistemas, sensores imagen y auxiliares, que intervienen en el proceso. Para poder emplear cuantitativamente los datos medidos ha sido necesario definir las relaciones espaciales y espectrales del sensor con la superficie observada y las potenciales anomalias y patrones objetivos de deteccion. Se ha analizado la repercusion que en la deteccion de anomalias tiene el tipo de sensor, tanto en su configuracion espectral como en las estrategias de diseno a la hora de registrar la radiacion prodecente de las superficies, siendo los dos tipos principales de sensores estudiados los barredores o escaneres de espejo giratorio (whiskbroom) y los barredores o escaneres de empuje (pushbroom). Se han definido distintos escenarios en la investigacion, lo que ha permitido abarcar una amplia variabilidad de entornos geomorfologicos y de tipos de coberturas, en ambientes mediterraneos, de latitudes medias y tropicales. En resumen, esta Tesis presenta una tecnica de deteccion de anomalias para datos hiperespectrales denominada DAFT en su variante de PP, basada en una reduccion de la dimensionalidad proyectando el fondo en un rango de longitudes de onda del espectro termico distinto de la proyeccion de las anomalias u objetivos sin firma espectral conocida. La metodologia propuesta ha sido probada con imagenes hiperespectrales reales de diferentes sensores y en diferentes escenarios o espacios, por lo tanto de diferente fondo espectral tambien, donde los resultados muestran los beneficios de la aproximacion en la deteccion de una gran variedad de objetos cuyas firmas espectrales tienen suficiente desviacion respecto del fondo. La tecnica resulta ser automatica en el sentido de que no hay necesidad de ajuste de parametros, dando resultados significativos en todos los casos. Incluso los objetos de tamano subpixel, que no pueden distinguirse a simple vista por el ojo humano en la imagen original, pueden ser detectados como anomalias. Ademas, se realiza una comparacion entre el enfoque propuesto, la popular tecnica RX y otros detectores tanto en su modalidad global como local. El metodo propuesto supera a los demas en determinados escenarios, demostrando su capacidad para reducir la proporcion de falsas alarmas. Los resultados del algoritmo automatico DAFT desarrollado, han demostrado la mejora en la definicion cualitativa de las anomalias espectrales que identifican a entidades diferentes en o bajo superficie, reemplazando para ello el modelo clasico de distribucion normal con un metodo robusto que contempla distintas alternativas desde el momento mismo de la adquisicion del dato hiperespectral. Para su consecucion ha sido necesario analizar la relacion entre parametros biofisicos, como la reflectancia y la emisividad de los materiales, y la distribucion espacial de entidades detectadas respecto de su entorno. Por ultimo, el algoritmo DAFT ha sido elegido como el mas adecuado para sensores que adquieren datos en el TIR, ya que presenta el mejor acuerdo con los datos de referencia, demostrando una gran eficacia computacional que facilita su implementacion en un sistema de cartografia que proyecte de forma automatica en un marco geografico de referencia las anomalias detectadas, lo que confirma un significativo avance hacia un sistema en lo que se denomina cartografia en tiempo real. The aim of this Thesis is to develop a specific methodology in order to be applied in automatic detection anomalies processes using hyperspectral data also called hyperspectral scenes, and to improve the classification processes. Several scenarios, areas and their relationship with surfaces and objects have been tested. The spectral characteristics of reflectance parameter and emissivity in the pattern recognition of urban materials in several hyperspectral scenes have also been tested. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS (Airborne Hyperspectral System), HyMAP Imaging Spectrometer, CASI (Compact Airborne Spectrographic Imager), AVIRIS (Airborne Visible Infrared Imaging Spectrometer), HYDICE (Hyperspectral Digital Imagery Collection Experiment) and MASTER (MODIS/ASTER Simulator) have been used in this research. It is assumed that there is not prior knowledge of the targets in anomaly detection. Thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by the image segmentation. Several experiments on different scenarios have been designed, analyzing the behavior of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. Results and their consequences in unsupervised classification processes are discussed. Detection of spectral anomalies aims at extracting automatically pixels that show significant responses in relation of their surroundings. This Thesis deals with the unsupervised technique of target detection, also called anomaly detection. Since this technique assumes no prior knowledge about the target or the statistical characteristics of the data, the only available option is to look for objects that are differentiated from the background. Several methods have been developed in the last decades, allowing a better understanding of the relationships between the image dimensionality and the optimization of search procedures as well as the subpixel differentiation of the spectral mixture and its implications in anomalous responses. In other sense, image spectrometry has proven to be efficient in the characterization of materials, based on statistical methods using a specific reflection and absorption bands. Spectral configurations in the VNIR, SWIR and TIR have been successfully used for mapping materials in different urban scenarios. There has been an increasing interest in the use of high resolution data (both spatial and spectral) to detect small objects and to discriminate surfaces in areas with urban complexity. This has come to be known as target detection which can be either supervised or unsupervised. In supervised target detection, algorithms lean on prior knowledge, such as the spectral signature. The detection process for matching signatures is not straightforward due to the complications of converting data airborne sensor with material spectra in the ground. This could be further complicated by the large number of possible objects of interest, as well as uncertainty as to the reflectance or emissivity of these objects and surfaces. An important objective in this research is to establish relationships that allow linking spectral anomalies with what can be called informational anomalies and, therefore, identify information related to anomalous responses in some places rather than simply spotting differences from the background. The development in recent years of new hyperspectral sensors and techniques, widen the possibilities for applications in remote sensing of the Earth. Remote sensing systems measure and record electromagnetic disturbances that the surveyed objects induce in their surroundings, by means of different sensors mounted on airborne or space platforms. Map updating is important for management and decisions making people, because of the fast changes that usually happen in natural, urban and semi urban areas. It is necessary to optimize the methodology for obtaining the best from remote sensing techniques from hyperspectral data. The first problem with hyperspectral data is to reduce the dimensionality, keeping the maximum amount of information. Hyperspectral sensors augment considerably the amount of information, this allows us to obtain a better precision on the separation of material but at the same time it is necessary to calculate a bigger number of parameters, and the precision lowers with the increase in the number of bands. This is known as the Hughes effects (Bellman, 1957) . Hyperspectral imagery allows us to discriminate between a huge number of different materials however some land and urban covers are made up with similar material and respond similarly which produces confusion in the classification. The training and the algorithm used for mapping are also important for the final result and some properties of thermal spectrum for detecting land cover will be studied. In summary, this Thesis presents a new technique for anomaly detection in hyperspectral data called DAFT, as a PP's variant, based on dimensionality reduction by projecting anomalies or targets with unknown spectral signature to the background, in a range thermal spectrum wavelengths. The proposed methodology has been tested with hyperspectral images from different imaging spectrometers corresponding to several places or scenarios, therefore with different spectral background. The results show the benefits of the approach to the detection of a variety of targets whose spectral signatures have sufficient deviation in relation to the background. DAFT is an automated technique in the sense that there is not necessary to adjust parameters, providing significant results in all cases. Subpixel anomalies which cannot be distinguished by the human eye, on the original image, however can be detected as outliers due to the projection of the VNIR end members with a very strong thermal contrast. Furthermore, a comparison between the proposed approach and the well-known RX detector is performed at both modes, global and local. The proposed method outperforms the existents in particular scenarios, demonstrating its performance to reduce the probability of false alarms. The results of the automatic algorithm DAFT have demonstrated improvement in the qualitative definition of the spectral anomalies by replacing the classical model by the normal distribution with a robust method. For their achievement has been necessary to analyze the relationship between biophysical parameters such as reflectance and emissivity, and the spatial distribution of detected entities with respect to their environment, as for example some buried or semi-buried materials, or building covers of asbestos, cellular polycarbonate-PVC or metal composites. Finally, the DAFT method has been chosen as the most suitable for anomaly detection using imaging spectrometers that acquire them in the thermal infrared spectrum, since it presents the best results in comparison with the reference data, demonstrating great computational efficiency that facilitates its implementation in a mapping system towards, what is called, Real-Time Mapping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grouping urban bus routes is necessary when there are evidences of significant differences among them. In Jiménez et al. (2013), a reduced sample of routes was grouped into clusters utilizing kinematic measured data. As a further step, in this paper, the remaining urban bus routes of a city, for which no kinematic measurements are available, are classified. For such purpose we use macroscopic geographical and functional variables to describe each route, while the clustering process is performed by means of a neural network. Limitations caused by reduced training samples are solved using the bootstrap method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desentrañar el funcionamiento del cerebro es uno de los principales desafíos a los que se enfrenta la ciencia actual. Un área de estudio que ha despertado muchas expectativas e interés es el análisis de la estructura cortical desde el punto de vista morfológico, de manera que se cree una simulación del cerebro a nivel molecular. Con ello se espera poder profundizar en el estudio de numerosas enfermedades neurológicas y patológicas. Con el desarrollo de este proyecto se persigue el estudio del soma y de las espinas desde el punto de vista de la neuromorfología teórica. Es común en el estado del arte que en el análisis de las características morfológicas de una neurona en tres dimensiones el soma sea ignorado o, en el mejor de los casos, que sea sustituido por una simple esfera. De hecho, el concepto de soma resulta abstracto porque no se dispone de una dfinición estricta y robusta que especifique exactamente donde finaliza y comienzan las dendritas. En este proyecto se alcanza por primera vez una definición matemática de soma para determinar qué es el soma. Con el fin de simular somas se ahonda en los atributos utilizados en el estado del arte. Estas propiedades, de índole genérica, no especifican una morfología única. Es por ello que se propone un método que agrupe propiedades locales y globales de la morfología. En disposición de las características se procede con la categorización del cuerpo celular en distintas clases a partir de un nuevo subtipo de red bayesiana dinámica adaptada al espacio. Con ello se discute la existencia de distintas clases de somas y se descubren las diferencias entre los somas piramidales de distintas capas del cerebro. A partir del modelo matemático se simulan por primera vez somas virtuales. Algunas morfologías de espinas han sido atribuidas a ciertos comportamientos cognitivos. Por ello resulta de interés dictaminar las clases existentes y relacionarlas con funciones de la actividad cerebral. La clasificación más extendida (Peters y Kaiserman-Abramof, 1970) presenta una definición ambigua y subjetiva dependiente de la interpretación de cada individuo y por tanto discutible. Este estudio se sustenta en un conjunto de descriptores extraídos mediante una técnica de análisis topológico local para representaciones 3D. Sobre estos datos se trata de alcanzar el conjunto de clases más adecuado en el que agrupar las espinas así como de describir cada grupo mediante reglas unívocas. A partir de los resultados, se discute la existencia de un continuo de espinas y las propiedades que caracterizan a cada subtipo de espina. ---ABSTRACT---Unravel how the brain works is one of the main challenges faced by current science. A field of study which has aroused great expectations and interest is the analysis of the cortical structure from a morphological point of view, so that a molecular level simulation of the brain is achieved. This is expected to deepen the study of many neurological and pathological diseases. This project seeks the study of the soma and spines from the theoretical neuromorphology point of view. In the state of the art it is common that when it comes to analyze the morphological characteristics of a three dimension neuron the soma is ignored or, in the best case, it is replaced by a simple sphere. In fact, the concept of soma is abstract because there is not a robust and strict definition on exactly where it ends and dendrites begin. In this project a mathematical definition is reached for the first time to determine what a soma is. With the aim to simulate somas the atributes applied in the state of the art are studied. These properties, generic in nature, do not specify a unique morphology. It is why it was proposed a method to group local and global morphology properties. In arrangement of the characteristics it was proceed with the categorization of the celular body into diferent classes by using a new subtype of dynamic Bayesian network adapted to space. From the result the existance of different classes of somas and diferences among pyramidal somas from distinct brain layers are discovered. From the mathematical model virtual somas were simulated for the first time. Some morphologies of spines have been attributed to certain cognitive behaviours. For this reason it is interesting to rule the existent classes and to relate them with their functions in the brain activity. The most extended classification (Peters y Kaiserman-Abramof, 1970) presents an ambiguous and subjective definition that relies on the interpretation of each individual and consequently it is arguable. This study was based on the set of descriptors extracted from a local topological analysis technique for 3D representations. On these data it was tried to reach the most suitable set of classes to group the spines as well as to describe each cluster by unambiguous rules. From these results, the existance of a continuum of spines and the properties that characterize each spine subtype were discussed .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light Detection and Ranging (LIDAR) provides high horizontal and vertical resolution of spatial data located in point cloud images, and is increasingly being used in a number of applications and disciplines, which have concentrated on the exploit and manipulation of the data using mainly its three dimensional nature. Bathymetric LIDAR systems and data are mainly focused to map depths in shallow and clear waters with a high degree of accuracy. Additionally, the backscattering produced by the different materials distributed over the bottom surface causes that the returned intensity signal contains important information about the reflection properties of these materials. Processing conveniently these values using a Simplified Radiative Transfer Model, allows the identification of different sea bottom types. This paper presents an original method for the classification of sea bottom by means of information processing extracted from the images generated through LIDAR data. The results are validated using a vector database containing benthic information derived by marine surveys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the possibility of using the Moire-Fourier deflectometry for measuring the local heat transfer coefficient inside small confined flows (micro-channels) and their relevance for checking theoretical models. This optical technique, supplemented with a digital image processing method of fringes, is applied for studying the local heat transfer over a backward facing step. The experimental results are compared with numerical results obtained from a commercial code, which has been contrasted with relevant solutions from the literature and bulk fluid temperature measurements at the inlet and outlet sections. In order to show the possibilities of the experimental technique, the influence of assuming an adiabatic wall on the numerical heat-transfer model is examined and the degree of agreement is discussed. As a result, the paper shows that the proposed Moiré-Fourier technique is a simple experimental setup suitable for temperature measurements with an accuracy similar to the thermocouples but with a spatial resolution near 0.01 mm.Moiré-Fourier deflectometry for local heat transfer measurement over a backward-facing step

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La necesidad de desarrollar técnicas para predecir la respuesta vibroacústica de estructuras espaciales lia ido ganando importancia en los últimos años. Las técnicas numéricas existentes en la actualidad son capaces de predecir de forma fiable el comportamiento vibroacústico de sistemas con altas o bajas densidades modales. Sin embargo, ambos rangos no siempre solapan lo que hace que sea necesario el desarrollo de métodos específicos para este rango, conocido como densidad modal media. Es en este rango, conocido también como media frecuencia, donde se centra la presente Tesis doctoral, debido a la carencia de métodos específicos para el cálculo de la respuesta vibroacústica. Para las estructuras estudiadas en este trabajo, los mencionados rangos de baja y alta densidad modal se corresponden, en general, con los rangos de baja y alta frecuencia, respectivamente. Los métodos numéricos que permiten obtener la respuesta vibroacústica para estos rangos de frecuencia están bien especificados. Para el rango de baja frecuencia se emplean técnicas deterministas, como el método de los Elementos Finitos, mientras que, para el rango de alta frecuencia las técnicas estadísticas son más utilizadas, como el Análisis Estadístico de la Energía. En el rango de medias frecuencias ninguno de estos métodos numéricos puede ser usado con suficiente precisión y, como consecuencia -a falta de propuestas más específicas- se han desarrollado métodos híbridos que combinan el uso de métodos de baja y alta frecuencia, intentando que cada uno supla las deficiencias del otro en este rango medio. Este trabajo propone dos soluciones diferentes para resolver el problema de la media frecuencia. El primero de ellos, denominado SHFL (del inglés Subsystem based High Frequency Limit procedure), propone un procedimiento multihíbrido en el cuál cada subestructura del sistema completo se modela empleando una técnica numérica diferente, dependiendo del rango de frecuencias de estudio. Con este propósito se introduce el concepto de límite de alta frecuencia de una subestructura, que marca el límite a partir del cual dicha subestructura tiene una densidad modal lo suficientemente alta como para ser modelada utilizando Análisis Estadístico de la Energía. Si la frecuencia de análisis es menor que el límite de alta frecuencia de la subestructura, ésta se modela utilizando Elementos Finitos. Mediante este método, el rango de media frecuencia se puede definir de una forma precisa, estando comprendido entre el menor y el mayor de los límites de alta frecuencia de las subestructuras que componen el sistema completo. Los resultados obtenidos mediante la aplicación de este método evidencian una mejora en la continuidad de la respuesta vibroacústica, mostrando una transición suave entre los rangos de baja y alta frecuencia. El segundo método propuesto se denomina HS-CMS (del inglés Hybrid Substructuring method based on Component Mode Synthesis). Este método se basa en la clasificación de la base modal de las subestructuras en conjuntos de modos globales (que afectan a todo o a varias partes del sistema) o locales (que afectan a una única subestructura), utilizando un método de Síntesis Modal de Componentes. De este modo es posible situar espacialmente los modos del sistema completo y estudiar el comportamiento del mismo desde el punto de vista de las subestructuras. De nuevo se emplea el concepto de límite de alta frecuencia de una subestructura para realizar la clasificación global/local de los modos en la misma. Mediante dicha clasificación se derivan las ecuaciones globales del movimiento, gobernadas por los modos globales, y en las que la influencia del conjunto de modos locales se introduce mediante modificaciones en las mismas (en su matriz dinámica de rigidez y en el vector de fuerzas). Las ecuaciones locales se resuelven empleando Análisis Estadístico de Energías. Sin embargo, este último será un modelo híbrido, en el cual se introduce la potencia adicional aportada por la presencia de los modos globales. El método ha sido probado para el cálculo de la respuesta de estructuras sometidas tanto a cargas estructurales como acústicas. Ambos métodos han sido probados inicialmente en estructuras sencillas para establecer las bases e hipótesis de aplicación. Posteriormente, se han aplicado a estructuras espaciales, como satélites y reflectores de antenas, mostrando buenos resultados, como se concluye de la comparación de las simulaciones y los datos experimentales medidos en ensayos, tanto estructurales como acústicos. Este trabajo abre un amplio campo de investigación a partir del cual es posible obtener metodologías precisas y eficientes para reproducir el comportamiento vibroacústico de sistemas en el rango de la media frecuencia. ABSTRACT Over the last years an increasing need of novel prediction techniques for vibroacoustic analysis of space structures has arisen. Current numerical techniques arc able to predict with enough accuracy the vibro-acoustic behaviour of systems with low and high modal densities. However, space structures are, in general, very complex and they present a range of frequencies in which a mixed behaviour exist. In such cases, the full system is composed of some sub-structures which has low modal density, while others present high modal density. This frequency range is known as the mid-frequency range and to develop methods for accurately describe the vibro-acoustic response in this frequency range is the scope of this dissertation. For the structures under study, the aforementioned low and high modal densities correspond with the low and high frequency ranges, respectively. For the low frequency range, deterministic techniques as the Finite Element Method (FEM) are used while, for the high frequency range statistical techniques, as the Statistical Energy Analysis (SEA), arc considered as more appropriate. In the mid-frequency range, where a mixed vibro-acoustic behaviour is expected, any of these numerical method can not be used with enough confidence level. As a consequence, it is usual to obtain an undetermined gap between low and high frequencies in the vibro-acoustic response function. This dissertation proposes two different solutions to the mid-frequency range problem. The first one, named as The Subsystem based High Frequency Limit (SHFL) procedure, proposes a multi-hybrid procedure in which each sub-structure of the full system is modelled with the appropriate modelling technique, depending on the frequency of study. With this purpose, the concept of high frequency limit of a sub-structure is introduced, marking out the limit above which a substructure has enough modal density to be modelled by SEA. For a certain analysis frequency, if it is lower than the high frequency limit of the sub-structure, the sub-structure is modelled through FEM and, if the frequency of analysis is higher than the high frequency limit, the sub-structure is modelled by SEA. The procedure leads to a number of hybrid models required to cover the medium frequency range, which is defined as the frequency range between the lowest substructure high frequency limit and the highest one. Using this procedure, the mid-frequency range can be define specifically so that, as a consequence, an improvement in the continuity of the vibro-acoustic response function is achieved, closing the undetermined gap between the low and high frequency ranges. The second proposed mid-frequency solution is the Hybrid Sub-structuring method based on Component Mode Synthesis (HS-CMS). The method adopts a partition scheme based on classifying the system modal basis into global and local sets of modes. This classification is performed by using a Component Mode Synthesis, in particular a Craig-Bampton transformation, in order to express the system modal base into the modal bases associated with each sub-structure. Then, each sub-structure modal base is classified into global and local set, fist ones associated with the long wavelength motion and second ones with the short wavelength motion. The high frequency limit of each sub-structure is used as frequency frontier between both sets of modes. From this classification, the equations of motion associated with global modes are derived, which include the interaction of local modes by means of corrections in the dynamic stiffness matrix and the force vector of the global problem. The local equations of motion are solved through SEA, where again interactions with global modes arc included through the inclusion of an additional input power into the SEA model. The method has been tested for the calculation of the response function of structures subjected to structural and acoustic loads. Both methods have been firstly tested in simple structures to establish their basis and main characteristics. Methods are also verified in space structures, as satellites and antenna reflectors, providing good results as it is concluded from the comparison with experimental results obtained in both, acoustic and structural load tests. This dissertation opens a wide field of research through which further studies could be performed to obtain efficient and accurate methodologies to appropriately reproduce the vibro-acoustic behaviour of complex systems in the mid-frequency range.