908 resultados para Little Rocky Mountains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

European lobsters were captured by employees of the Marine Biological Station and local fishermen from the rocky subtidal zone around the island of Helgoland (North Sea, 54°11.3'N, 7°54.0'E) and from the Helgoland Deep Trench, located south west of the island. The animals were captured by pots, traps, trawl and divers. All measured lobsters were tagged and released. A tagged lobster was classified by the absence or presence of colour tag and/or T-bar tag. Data of lobsters contains capture date, fresh weight, carapace lengths, sex and the information if lobsters were egg-bearing and tagged. Furthermore, data of commercial landed lobsters are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through a field experiment, we show that a predator has negative nonconsumptive effects (NCEs) on different life-history stages of the same prey species. Shortly before the recruitment season of the barnacle Semibalanus balanoides (May-June), we established experimental cages in rocky intertidal habitats in Nova Scotia, Canada. The cages were used to manipulate the presence and absence of dogwhelks, Nucella lapillus, the main predators of barnacles. At the centre of each cage, we installed a tile where barnacle pelagic larvae could settle and the resulting recruits grow. Mesh prevented caged dogwhelks from accessing the tiles, but allowed waterborne dogwhelk cues to reach the tiles. Results in May indicated that barnacle larvae settled preferentially on tiles from cages without dogwhelks. In November, at the end of the dogwhelk activity period and once the barnacle recruits had grown to adult size, barnacle body mass was lower in the presence of dogwhelks. This limitation may have resulted from a lower barnacle feeding activity with nearby dogwhelks, as found by a previous study. The observed larval and adult responses in barnacles are consistent with attempts to decrease predation risk. November data also indicated that dogwhelk cues limited barnacle reproductive output, a possible consequence of the limited growth of barnacles. Overall, this study suggests that a predator species might influence trait evolution in a prey species through NCEs on different life-history stages.