971 resultados para LiteSteel beams


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is to control the quality of the structures, procedures for addressing the assembly of the formwork, scaffolding and the frame of pillars, beams and slabs. He had also intended to show that the vibration of launch and concrete items are also important, if poorly implemented can undermine the structure. This work also shows that the mapping becomes essential if there is some problem in the concrete, where concrete was launched, could be identified. And finally check the product where the structure will be evaluated for how much their quality

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the treatment plans in conventional Proton therapy are considered only the elastic interactions of protons with electrons and/or nuclei, it means, mainly ionization and coulomb excitation processes. As the energy needed to reach the deep tumors should be of several hundred of MeVs, certainly the nuclear inelastic channels are open. Only some previous studies of the contribution of these processes in the full dose have been made towards targets composed of water. In this study will be presented the results of the simulation of the processes of interaction of beams of protons in the range of 100-200 MeV of energy with a cylindrical phantom composed by striated muscle (ICRU), emphasizing in the contribution to total dose due to the deposition of energy by secondary particles alpha (α), deuterium (2H), tritium (3H), neutron (n) and hélio3 (3He), originated by nuclear inelastic processes. The simulations were performed by using the method of Monte Carlo, via the computer code MCNPX v2.50 (Monte Carlo N-Particle eXtended). The results will be shown demonstrated through the graphics of the deposited dose with or without nuclear interaction, the percentual of dose deposited by secondary particles, the radial dispersion of neutrons, as well as the multiplicity of secondary particles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In proton therapy, the deposition of secondary particles energy originated by nuclear inelastic process (n, 2H, 3H, 3He and α) has a contribution in the total dose that deserves to be discussed. In calculations of plans implemented for routine treatment, the paid dose is calculated whereas the proton loses energy by ionization and or coulomb excitement. The contribution of inelastic processes associated with nuclear reactions is not considered. There are only estimates for pure materials or simple composition (water, for example), because of the difficulty of processing targets consisting of different materials. For this project, we use the Monte Carlo method employing the code MCNPX v2.50 (Monte Carlo N-Particle eXtended) to present results of the contribution to the total dose of secondary particles. In this work, it was implemented a cylindrical phantom composed by cortical bone, for proton beams between 100 and 200 MeV. With the results obtained, it was possible to generate graphics to analyze: the dose deposition relation with and without nuclear interaction, the multiplicity and percentage of deposited dose for each secondary particle and a radial dispersion of neutrons in the material

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present work was to evaluate Pinus’ glued laminated timber (glulam) beams and steel reinforced glulam beams, using PU mono-component adhesive in lamination step and epoxy adhesive to bond steel bars. The mechanical performance was verified through bending test, and the adopted method based on homogenized section, to considerate the differences between wood and steel mechanical properties. The homogenization section method proved itself effective in obtaining the stiffness of the parts in MLCA. The stiffness of reinforced beams increased 91% in comparison with glulam beams, differing only 5.5 % from value of stiffness calculated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiotherapy is a branch of medical physics related to the treatment of malignant neoplasm, being an important instrument in the fight against cancer, when combined with the effort of a multidisciplinary team, composed of, physicians, physicists, nurses and technicians. Every year more than 3.5 million new cases of cancer are recorded in the world, being the prostate cancer responsible for approximately 25% of this amount (INCA and IARC, 2008). In this type of cancer, radiotherapy is a method indicated for treatement. The technological advance in this area over years has allowed a greater accuracy in the tumor location, more conformation of the radiation beam around the tumor, reducing the dose in healthy tissues and a consequent dose increase on treatment (Bedford et al., 1999). A radiotherapy planning, in which the physicist develops an important role, is composed of several steps, including choosing the best configuration of treatment beams. This choice has a close relationship with success of therapy and is critical to achieve the best distribution of dose inside the tumor and expose the least as possible the healthy tissue to radiation. In this work, two options for setting up camps in the first phase in a treatment of prostate cancer were simulated in computer planning: 4 fields orthogonal or “Box” with gantry angles in 00, 1800, 2700 e 90° and 4 fields angled or “X” (1350, 450, 3150 e 2250). The percentage of the rectal volume exposed to 40, 50, 60, 72 and 76 Gy should be limited to 60, 50, 25, 15 and 5% respectively (Greco et al., 2003). The femoral toxicity have limited dose by 70% of the total dose prescribed in a prostate treatment (Bedford et al., 1999). The planning of 27 patients with prostate adenocarcinoma submitted to 3D conformal radiotherapy were accompanied. As a result, it was assessed that the best TCP (tumor control probability)... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In radiation theraphy with electron beam, the electrons are produced in linear accelerators, and energy the most used have between 4MeV and 20MeV. Generally, the treatments are done for superficial injuries, because the low penetration of these particles. In this work a system for calculation of monitor units (U.M.) for cases of treatments with electron beam was developed. The Excel program of Microsoft was used and is easily found in the operational system of the personal microcomputers. In the Excel has been inserted the pertinent data of the linear accelerator of Varian, model 2100C, used in the Service of radiation theraphy of the Hospital of the Clinics of the College of Medicine of the UNESP of Botucatu. For some values of the physical parameters, such as: factors field and factors calibration, not supplied in the tests of acceptance of the machine, still proceeded calculations from interpolation and extrapolation. The mathematical formulas for automatic search of these and others factors used in the calculations of the determination of the U.M had been developed in agreement available routines in Excel. For this the functions had been used the function IF (that it imposes search condition) and the PROCH (that looks a value in a column from determined line), beyond the basic functions of addition, multiplication and division. It is intended to optimize the routine of the Services of radiation theraphy that perform through eletrontheraphy procedures, speeding the calculations and minimizing the occurrence of errors and uncertainties deriving of the maken a mistake manipulation of the parameters gotten in tables of data of electron beams

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the recent years, the use of proton beams in radiotherapy has been an outstanding progress (SMITH, 2006). Up to now, computed tomography (CT) is a prerequisite for treatment planning in this kind of therapy because it provides the electron density distribution required for calculation of dose and the interval of doses. However, the use of CT images for proton treatment planning ignores fundamental differences in physical interaction processes between photons and protons and is, therefore, potentially inaccurate (SADROZINSKI, 2004). Proton CT (pCT) can in principle directly measure the density distribution needed in a patient for the dose distribution (SCHULTE, et al, 2004). One important problem that should be solved is the implementation of image reconstruction algorithms. In this sense, it is necessary to know how the presence of materials with different density and composition interfere in the energy deposition by ionization and coulomb excitation, during its trajectory. The study was conducted in two stages, was used in both the program SRIM (The Stopping and Range of Ions in Matter) to perform simulations of the interaction of proton beams with pencil beam type. In the first step we used the energies in the range of 100-250 MeV (ZIEGLER, 1999). The targets were set to 50 mm in length for the beam of 100 MeV, due to its interaction with the target, and short-range, and 70 mm for 150, 200 and 250 MeV The target was composed of liquid water and a layer of 6 mm cortical bone (ICRP). It were made 9 simulations varying the position of the heterogeneity of 5 mm. In the second step the energy of 250 MeV was taken out from the simulations, due to its greater energy and less interaction. The targets were diminished to 50 mm thick to standardize the simulations. The layer of bone was divided into two equal parts and both were put in the ends of the target... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of the total dose due to deposition of secondary energy particles caused by nuclear inelastic processes (n, 2H, 3H, 3He and  ) in proton therapy is an opened problem and in discussion. In the calculations of plans implemented for routine treatment, the paid dose is calculated whereas that the proton loses energy by ionization and or coulomb excitement. The contribution of inelastic processes associated with nuclear reactions is not considered, mainly due to the difficulty of processing targets consisting of various materials. In this sense, there are only estimates for pure materials or simple composition (water, for example).This work presents the results of simulations by the Monte Carlo method employing the code MCNPX v2.50 (Monte Carlo N-Particle eXtended) of the contribution to the total dose of secondary particles. The study was implemented in a cylindrical phantom composed by compact bone, for monochromatic beams of protons between 100 and 200 MeV with pencil beam form

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to new technologies in civil engineering and the competition of the market, the demand for computer programs for the elaboration of structural projects of reinforced concrete is raising in a quick and efficient manner. This paper presents a study based on Eberick, a structural calculation software, and this software was applied to a low cost residence project. By performing structural calculation manually, it is possible to compare and analyze the criteria that Eberick uses for the design and detailing of structural elements like columns, beams and slabs. As the software functionality becomes clear, the engineer will use it careful and safely, exploring all of its resources and advantages

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiopharmaceuticals are substances marked with radionuclides that can be used for detection and treatment of cancer, infections and inflammatory diseases. They emit several types of radiation through different decay routes, each radioisotope with its specific properties and uses. They can usually be produced from several different materials, by bombardment with particle beams in a nuclear research reactor or cyclotron, depending on their characteristics. Brazil has four public institutions which produce - or import - and distribute radiopharmaceuticals to hospitals and clinics throughout its territory. The largest such institution, Ipen, distributes 97% of radiopharmaceuticals used in the country. Some radiopharmaceuticals decay very quickly, meaning they must be produced and quickly administered to the patient in the same location, presenting a logistical challenge. Nuclear medicine in Brazil is a promising field and has been steadily growing, although rigid laws and a lack of qualified work force hinder Research and Development efforts for new radiopharmaceuticals. The construction of a new nuclear research reactor, in 2016, should generate self-sufficiency and economy in radiopharmaceutical production and avoid a future crisis in the supply of technetium-99m, the most important radioisotope, used in over 80% of procedures with radiopharmaceuticals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aimed to analyze the effects of tooth bleaching with 10% carbamide peroxide (CP) gel on the bond strength of resin composite restorations to dentin. Material and Methods: Twenty cavities were prepared on the buccal surface of bovine teeth. After acid etching and application of bonding agent on dentin and enamel, the cavities were restored with composite resin. The specimens were divided into groups according to treatment on the surface of enamel / restoration: G1 - control (no treatment) and G2 (10% PC gel application for 8h/day during 14 days). After this period, the teeth were cut to produce beams with 0.81 mm2 cross-sectional area, which were subjected to microtensile test. The fractures were examined with a stereomicroscope and classified as cohesive in resin or dentin, adhesive, or mixed. Results: The statistical analysis (ANOVA / χ2) revealed that the factor treatment interfered with the bond strength, which was significantly higher for specimens of G2 (p <0.05). Adhesive fractures occurred in most of specimens of both groups with values ranging from 48.3% to 75%. Mixed fractures were the second more frequent in G1 and cohesive resin failure in G2. Conclusion: It was concluded that tooth bleaching with 10% of PC increased the bond strength of adhesive restorations to dentin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ideally projected to be applied on soft tissues, infrared lasers were improved by restorative dentistry to be used in hard dental tissues cavity preparations-namely enamel and dentin. This paper evidentiates the relevant aspects of infrared Erbium laser's action mechanism and its effects, and characterizes the different effects deriving from the laser's beams emission. The criteria for use and selection of optimal parameters for the correct application of laser systems and infuence of supporting factors on the process, such as water amount and its presence in the ablation process, protection exerted by the plasma shielding and structural factors, which are indispensable in dental tissues cavity preparation related to restorative technique, are subordinated to optical modifcations caused by the interaction of the energy dissipated by these laser light emission systems in the targeted tissue substrate. Clinical relevance: Differences in the action of infrared Erbium laser system in regard to the nature of the ablation process and variations on the morphological aspects observed in the super-fcial structure of the target tissue irradiated, may be correlated to the structural optical modifcations of the substrate produced by an interaction of the energy propagated by laser systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)