859 resultados para Large-scale gradient


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data Envelopment Analysis (DEA) is one of the most widely used methods in the measurement of the efficiency and productivity of Decision Making Units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper proposes a neural network back-propagation Data Envelopment Analysis to address this problem for the very large scale datasets now emerging in practice. Neural network requirements for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of large datasets. Finally, the back-propagation DEA algorithm is applied to five large datasets and compared with the results obtained by conventional DEA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis patterns of working hours in large-scale grocery retailing in Britain and France are compared. The research is carried out using cross-national comparative methodology, and the analysis is based on information derived from secondary sources and empirical research in large-scale grocery retailing involving employers and trade unions at industry level and case studies at outlet level. The thesis begins by comparing national patterns of working hours in Britain and France over the post-war period. Subsequently, a detailed comparison of working hours in large-scale grocery retailing in Britain and France is carried out through the analysis of secondary sources and empirical data. Emphasis is placed on analyzing part-time working hours. They are contrasted and compared at national level and explained in terms of supply and demand factors. The relationships between the structuring of, and satisfaction with, working hours and factors determining women's integration in the workforce in Britain and France are investigated. Part-time hours are then compared and contrasted in large-scale grocery retailing in the context of the analysis of working hours. The relationship between the structuring of working hours and satisfaction with them is examined in both countries through research with women part-timers in case study outlets. The cross-national comparative methodology is used to examine whether dissimilar national contexts in Britain and France have led to different patterns of working hours in large-scale grocery retailing. The principal conclusion is that significant differences are found in the length, organization and flexibility of working hours and that these differences can be attributed to dissimilar socio-economic, political, and cultural contexts in the two countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis introduces and develops a novel real-time predictive maintenance system to estimate the machine system parameters using the motion current signature. Recently, motion current signature analysis has been addressed as an alternative to the use of sensors for monitoring internal faults of a motor. A maintenance system based upon the analysis of motion current signature avoids the need for the implementation and maintenance of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion current signature, the research described in this thesis implements a novel real-time predictive maintenance system for current and future manufacturing machine systems. A crucial concept underpinning this project is that the motion current signature contains infor­mation relating to the machine system parameters and that this information can be extracted using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of con­cept procedure is performed, which substantiates this concept. A simulation model, TuneLearn, is developed to simulate the large amount of training data required by the neural network ap­proach. Statistical validation and verification of the model is performed to ascertain confidence in the simulated motion current signature. Validation experiment concludes that, although, the simulation model generates a good macro-dynamical mapping of the motion current signature, it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding performance of higher order and nonlinear factors, such as backlash and compliance. Failure of the simulation model to determine the micro-dynamical structure suggests the pres­ence of nonlinearity in the motion current signature. This motivated us to perform surrogate data testing for nonlinearity in the motion current signature. Results confirm the presence of nonlinearity in the motion current signature, thereby, motivating the use of nonlinear tech­niques for further analysis. Outcomes of the experiment show that nonlinear noise reduction combined with the linear reverse algorithm offers precise machine system parameter estimation using the motion current signature for the implementation of the real-time predictive maintenance system. Finally, a linear reverse algorithm, BJEST, is developed and applied to the motion current signature to estimate the machine system parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T-cell activation requires interaction of T-cell receptors (TCR) with peptide epitopes bound by major histocompatibility complex (MHC) proteins. This interaction occurs at a special cell-cell junction known as the immune or immunological synapse. Fluorescence microscopy has shown that the interplay among one agonist peptide-MHC (pMHC), one TCR and one CD4 provides the minimum complexity needed to trigger transient calcium signalling. We describe a computational approach to the study of the immune synapse. Using molecular dynamics simulation, we report here on a study of the smallest viable model, a TCR-pMHC-CD4 complex in a membrane environment. The computed structural and thermodynamic properties are in fair agreement with experiment. A number of biomolecules participate in the formation of the immunological synapse. Multi-scale molecular dynamics simulations may be the best opportunity we have to reach a full understanding of this remarkable supra-macromolecular event at a cell-cell junction.