972 resultados para Laplace-Metropolis estimator
Resumo:
Throughout its history, Cairo evolved as a regional metropolis that sprawls along the banks of the Nile accumulating narratives of evolving social landscape. Overlooking the Nile reflected a privileged social position and place for the urban elite. In spatial terms, the urban bourgeoisie tend to develop living havens in enclaves that are distant from the populace’s everyday life. Ironically, exclusive settlements only attract urban growth further in their direction. This chapter offers an analytical reading of the socio-spatial structure of Cairo following the emergence and decline of a series bourgeoisie quarters along the shores of the Nile. It reports urban narratives based on archival records, documents and investigation of historical texts and travelers’ accounts. This essay argues that cities are essentially social constructs in which hierarchy and connectivity are fundamental aspects of its economic and spatial logic. Through social ambition and desire for upgrade, middle class infiltrate into bourgeoisie havens and sometimes encircle it, seeking better living condition inscribed by social mobility and connectivity to centres of wealth and power. Being both natural barrier and cohesive spine, the Nile helped Cairo to develop successive nucleuses of highly crafted urban experiences that have left their imprints on the contemporary urban scene.
Resumo:
Radio-frequency (RF) impairments, which intimately exist in wireless communication systems, can severely limit the performance of multiple-input-multiple-output (MIMO) systems. Although we can resort to compensation schemes to mitigate some of these impairments, a certain amount of residual impairments always persists. In this paper, we consider a training-based point-to-point MIMO system with residual transmit RF impairments (RTRI) using spatial multiplexing transmission. Specifically, we derive a new linear channel estimator for the proposed model, and show that RTRI create an estimation error floor in the high signal-to-noise ratio (SNR) regime. Moreover, we derive closed-form expressions for the signal-to-noise-plus-interference ratio (SINR) distributions, along with analytical expressions for the ergodic achievable rates of zero-forcing, maximum ratio combining, and minimum mean-squared error receivers, respectively. In addition, we optimize the ergodic achievable rates with respect to the training sequence length and demonstrate that finite dimensional systems with RTRI generally require more training at high SNRs than those with ideal hardware. Finally, we extend our analysis to large-scale MIMO configurations, and derive deterministic equivalents of the ergodic achievable rates. It is shown that, by deploying large receive antenna arrays, the extra training requirements due to RTRI can be eliminated. In fact, with a sufficiently large number of receive antennas, systems with RTRI may even need less training than systems with ideal hardware.
Resumo:
It is shown that under certain conditions it is possible to obtain a good speech estimate from noise without requiring noise estimation. We study an implementation of the theory, namely wide matching, for speech enhancement. The new approach performs sentence-wide joint speech segment estimation subject to maximum recognizability to gain noise robustness. Experiments have been conducted to evaluate the new approach with variable noises and SNRs from -5 dB to noise free. It is shown that the new approach, without any estimation of the noise, significantly outperformed conventional methods in the low SNR conditions while retaining comparable performance in the high SNR conditions. It is further suggested that the wide matching and deep learning approaches can be combined towards a highly robust and accurate speech estimator.
Resumo:
We present a robust Dirichlet process for estimating survival functions from samples with right-censored data. It adopts a prior near-ignorance approach to avoid almost any assumption about the distribution of the population lifetimes, as well as the need of eliciting an infinite dimensional parameter (in case of lack of prior information), as it happens with the usual Dirichlet process prior. We show how such model can be used to derive robust inferences from right-censored lifetime data. Robustness is due to the identification of the decisions that are prior-dependent, and can be interpreted as an analysis of sensitivity with respect to the hypothetical inclusion of fictitious new samples in the data. In particular, we derive a nonparametric estimator of the survival probability and a hypothesis test about the probability that the lifetime of an individual from one population is shorter than the lifetime of an individual from another. We evaluate these ideas on simulated data and on the Australian AIDS survival dataset. The methods are publicly available through an easy-to-use R package.
Resumo:
This work presents a new general purpose classifier named Averaged Extended Tree Augmented Naive Bayes (AETAN), which is based on combining the advantageous characteristics of Extended Tree Augmented Naive Bayes (ETAN) and Averaged One-Dependence Estimator (AODE) classifiers. We describe the main properties of the approach and algorithms for learning it, along with an analysis of its computational time complexity. Empirical results with numerous data sets indicate that the new approach is superior to ETAN and AODE in terms of both zero-one classification accuracy and log loss. It also compares favourably against weighted AODE and hidden Naive Bayes. The learning phase of the new approach is slower than that of its competitors, while the time complexity for the testing phase is similar. Such characteristics suggest that the new classifier is ideal in scenarios where online learning is not required.
Resumo:
This work proposes an extended version of the well-known tree-augmented naive Bayes (TAN) classifier where the structure learning step is performed without requiring features to be connected to the class. Based on a modification of Edmonds' algorithm, our structure learning procedure explores a superset of the structures that are considered by TAN, yet achieves global optimality of the learning score function in a very efficient way (quadratic in the number of features, the same complexity as learning TANs). We enhance our procedure with a new score function that only takes into account arcs that are relevant to predict the class, as well as an optimization over the equivalent sample size during learning. These ideas may be useful for structure learning of Bayesian networks in general. A range of experiments shows that we obtain models with better prediction accuracy than naive Bayes and TAN, and comparable to the accuracy of the state-of-the-art classifier averaged one-dependence estimator (AODE). We release our implementation of ETAN so that it can be easily installed and run within Weka.
Resumo:
In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.
Resumo:
In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.
Resumo:
In this paper, we consider the uplink of a single-cell multi-user single-input multiple-output (MU-SIMO) system with in-phase and quadrature-phase imbalance (IQI). Particularly, we investigate the effect of receive (RX) IQI on the performance of MU-SIMO systems with large antenna arrays employing maximum-ratio combining (MRC) receivers. In order to study how IQI affects channel estimation, we derive a new channel estimator for the IQI-impaired model and show that the higher the value of signal-to-noise ratio (SNR) the higher the impact of IQI on the spectral efficiency (SE). Moreover, a novel pilot-based joint estimator of the augmented MIMO channel matrix and IQI coefficients is described and then, a low-complexity IQI compensation scheme is proposed which is based on the
IQI coefficients’ estimation and it is independent of the channel gain. The performance of the proposed compensation scheme is analytically evaluated by deriving a tractable approximation of the ergodic SE assuming transmission over Rayleigh fading channels with large-scale fading. Furthermore, we investigate how many MSs should be scheduled in massive multiple-input multiple-output (MIMO) systems with IQI and show that the highest SE loss occurs at the optimal operating point. Finally,
by deriving asymptotic power scaling laws, and proving that the SE loss due to IQI is asymptotically independent of the number of BS antennas, we show that massive MIMO is resilient to the effect of RX IQI.
Resumo:
O presente trabalho aborda o problema da estimação de canal e da estimação de desvio de frequência em sistemas OFDM com múltiplas configurações de antenas no transmissor e no receptor. Nesta tese é apresentado o estudo teórico sobre o impacto da densidade de pilotos no desempenho da estimação de canal em sistemas OFDM e são propostos diversos algoritmos para estimação de canal e estimação de desvio de frequência em sistemas OFDM com antenas únicas no transmissor e receptor, com diversidade de transmissão e MIMO. O estudo teórico culmina com a formulação analítica do erro quadrático médio de um estimador de canal genérico num sistema OFDM que utilize pilotos dedicados, distribuidos no quadro transmitido em padrões bi-dimensionais. A formulação genérica é concretizada para o estimador bi-dimensional LS-DFT, permitindo aferir da exactidão da formulação analítica quando comparada com os valores obtidos por simulação do sistema abordado. Os algoritmos de estimação investigados tiram partido da presença de pilotos dedicados presentes nos quadros transmitidos para estimar com precisão os parâmetros pretendidos. Pela sua baixa complexidade, estes algoritmos revelam-se especialmente adequados para implementação em terminais móveis com capacidade computacional e consumo limitados. O desempenho dos algoritmos propostos foi avaliado por meio de simulação do sistema utilizado, recorrendo a modelos aceites de caracterização do canal móvel multipercurso. A comparação do seu desempenho com algoritmos de referência permitir aferir da sua validade. ABSTRACT: The present work focus on the problem of channel estimation and frequency offset estimation in OFDM systems, with different antenna configurations at both the transmitter and the receiver. This thesis presents the theoretical study of the impact of the pilot density in the performance of the channel estimation in OFDM systems and proposes several channel and frequency offset algorithms for OFDM systems with single antenna at both transmitter and receiver, with transmitter diversity and MIMO. The theoretical study results in the analytical formulation of the mean square error of a generic channel estimator for an OFDM system using dedicated pilots, distributed in the transmitted frame in two-dimensional patterns. The generic formulation is implemented for the two-dimensional LS-DFT estimator to verify the accuracy of the analytical formulation when compared with the values obtained by simulation of the discussed system. The investigated estimation algorithms take advantage of the presence of dedicated pilots present in the transmitted frames to accurately estimate the required parameters. Due to its low complexity, these algorithms are especially suited for implementation in mobile terminals with limited processing power and consumption. The performance of the proposed algorithms was evaluated by simulation of the used system, using accepted multipath mobile channel models. The comparison of its performance with the one of reference algorithms measures its validity.
Resumo:
O objectivo principal da presente tese consiste no desenvolvimento de estimadores robustos do variograma com boas propriedades de eficiência. O variograma é um instrumento fundamental em Geoestatística, pois modela a estrutura de dependência do processo em estudo e influencia decisivamente a predição de novas observações. Os métodos tradicionais de estimação do variograma não são robustos, ou seja, são sensíveis a pequenos desvios das hipóteses do modelo. Essa questão é importante, pois as propriedades que motivam a aplicação de tais métodos, podem não ser válidas nas vizinhanças do modelo assumido. O presente trabalho começa por conter uma revisão dos principais conceitos em Geoestatística e da estimação tradicional do variograma. De seguida, resumem-se algumas noções fundamentais sobre robustez estatística. No seguimento, apresenta-se um novo método de estimação do variograma que se designou por estimador de múltiplos variogramas. O método consiste em quatro etapas, nas quais prevalecem, alternadamente, os critérios de robustez ou de eficiência. A partir da amostra inicial, são calculadas, de forma robusta, algumas estimativas pontuais do variograma; com base nessas estimativas pontuais, são estimados os parâmetros do modelo pelo método dos mínimos quadrados; as duas fases anteriores são repetidas, criando um conjunto de múltiplas estimativas da função variograma; por fim, a estimativa final do variograma é definida pela mediana das estimativas obtidas anteriormente. Assim, é possível obter um estimador que tem boas propriedades de robustez e boa eficiência em processos Gaussianos. A investigação desenvolvida revelou que, quando se usam estimativas discretas na primeira fase da estimação do variograma, existem situações onde a identificabilidade dos parâmetros não está assegurada. Para os modelos de variograma mais comuns, foi possível estabelecer condições, pouco restritivas, que garantem a unicidade de solução na estimação do variograma. A estimação do variograma supõe sempre a estacionaridade da média do processo. Como é importante que existam procedimentos objectivos para avaliar tal condição, neste trabalho sugere-se um teste para validar essa hipótese. A estatística do teste é um estimador-MM, cuja distribuição é desconhecida nas condições de dependência assumidas. Tendo em vista a sua aproximação, apresenta-se uma versão do método bootstrap adequada ao estudo de observações dependentes de processos espaciais. Finalmente, o estimador de múltiplos variogramas é avaliado em termos da sua aplicação prática. O trabalho contém um estudo de simulação que confirma as propriedades estabelecidas. Em todos os casos analisados, o estimador de múltiplos variogramas produziu melhores resultados do que as alternativas usuais, tanto para a distribuição assumida, como para distribuições contaminadas.
Resumo:
Os Modelos de Equações Simultâneas (SEM) são modelos estatísticos com muita tradição em estudos de Econometria, uma vez que permitem representar e estudar uma vasta gama de processos económicos. Os estimadores mais usados em SEM resultam da aplicação do Método dos Mínimos Quadrados ou do Método da Máxima Verosimilhança, os quais não são robustos. Em Maronna e Yohai (1997), os autores propõem formas de “robustificar” esses estimadores. Um outro método de estimação com interesse nestes modelos é o Método dos Momentos Generalizado (GMM), o qual também conduz a estimadores não robustos. Estimadores que sofrem de falta de robustez são muito inconvenientes uma vez que podem conduzir a resultados enganadores quando são violadas as hipóteses subjacentes ao modelo assumido. Os estimadores robustos são de grande valor, em particular quando os modelos em estudo são complexos, como é o caso dos SEM. O principal objectivo desta investigação foi o de procurar tais estimadores tendo-se construído um estimador robusto a que se deu o nome de GMMOGK. Trata-se de uma versão robusta do estimador GMM. Para avaliar o desempenho do novo estimador foi feito um adequado estudo de simulação e foi também feita a aplicação do estimador a um conjunto de dados reais. O estimador robusto tem um bom desempenho nos modelos heterocedásticos considerados e, nessas condições, comporta-se melhor do que os estimadores não robustos usados no estudo. Contudo, quando a análise é feita em cada equação separadamente, a especificidade de cada equação individual e a estrutura de dependência do sistema são dois aspectos que influenciam o desempenho do estimador, tal como acontece com os estimadores usuais. Para enquadrar a investigação, o texto inclui uma revisão de aspectos essenciais dos SEM, o seu papel em Econometria, os principais métodos de estimação, com particular ênfase no GMM, e uma curta introdução à estimação robusta.
Resumo:
The energy of a graph G is the sum of the absolute values of the eigenvalues of the adjacency matrix of G. The Laplacian (respectively, the signless Laplacian) energy of G is the sum of the absolute values of the differences between the eigenvalues of the Laplacian (respectively, signless Laplacian) matrix and the arithmetic mean of the vertex degrees of the graph. In this paper, among some results which relate these energies, we point out some bounds to them using the energy of the line graph of G. Most of these bounds are valid for both energies, Laplacian and signless Laplacian. However, we present two new upper bounds on the signless Laplacian which are not upper bounds for the Laplacian energy. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Introduzimos um cálculo das variações fraccional nas escalas temporais ℤ e (hℤ)!. Estabelecemos a primeira e a segunda condição necessária de optimalidade. São dados alguns exemplos numéricos que ilustram o uso quer da nova condição de Euler–Lagrange quer da nova condição do tipo de Legendre. Introduzimos também novas definições de derivada fraccional e de integral fraccional numa escala temporal com recurso à transformada inversa generalizada de Laplace.
Resumo:
As técnicas estatísticas são fundamentais em ciência e a análise de regressão linear é, quiçá, uma das metodologias mais usadas. É bem conhecido da literatura que, sob determinadas condições, a regressão linear é uma ferramenta estatística poderosíssima. Infelizmente, na prática, algumas dessas condições raramente são satisfeitas e os modelos de regressão tornam-se mal-postos, inviabilizando, assim, a aplicação dos tradicionais métodos de estimação. Este trabalho apresenta algumas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, em particular na estimação de modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. A investigação é desenvolvida em três vertentes, nomeadamente na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, na estimação do parâmetro ridge em regressão ridge e, por último, em novos desenvolvimentos na estimação com máxima entropia. Na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, o trabalho desenvolvido evidencia um melhor desempenho dos estimadores de máxima entropia em relação ao estimador de máxima verosimilhança. Este bom desempenho é notório em modelos com poucas observações por estado e em modelos com um grande número de estados, os quais são comummente afetados por colinearidade. Espera-se que a utilização de estimadores de máxima entropia contribua para o tão desejado aumento de trabalho empírico com estas fronteiras de produção. Em regressão ridge o maior desafio é a estimação do parâmetro ridge. Embora existam inúmeros procedimentos disponíveis na literatura, a verdade é que não existe nenhum que supere todos os outros. Neste trabalho é proposto um novo estimador do parâmetro ridge, que combina a análise do traço ridge e a estimação com máxima entropia. Os resultados obtidos nos estudos de simulação sugerem que este novo estimador é um dos melhores procedimentos existentes na literatura para a estimação do parâmetro ridge. O estimador de máxima entropia de Leuven é baseado no método dos mínimos quadrados, na entropia de Shannon e em conceitos da eletrodinâmica quântica. Este estimador suplanta a principal crítica apontada ao estimador de máxima entropia generalizada, uma vez que prescinde dos suportes para os parâmetros e erros do modelo de regressão. Neste trabalho são apresentadas novas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, tendo por base o estimador de máxima entropia de Leuven, a teoria da informação e a regressão robusta. Os estimadores desenvolvidos revelam um bom desempenho em modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. Por último, são apresentados alguns códigos computacionais para estimação com máxima entropia, contribuindo, deste modo, para um aumento dos escassos recursos computacionais atualmente disponíveis.