985 resultados para Lane drops.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power conversion using high frequency (HF) link converters is popular because of compact size and light weight of highfrequency transformer. This study focuses on improved utilisation of HF transformer in DC–AC applications. In practical application, the operating condition of the power converter deviates significantly from the designed considerations. These deviating factors are commutation requirements (dead-time, overlap), mismatch in device drops and presence of the fundamental frequency in load current. As a result, the HF transformer handles some amount of low-frequency components (including DC) other than desired HF components. This causes the operating point in B-H curve to shift away from its normal or idealised position and hence results poor utilisation of the HF transformer and unwanted losses. This study investigates the nature of the problem with experimental determination of approximate lumped parameter modelling and saturation behaviour (B-H curve) of the HF transformer. A simple closed-loop control algorithm with online tuning of the controller parameters is proposed to improve the utilisation of the isolation transformer. The simulation and experimental results are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar distillation can be used to produce potable water from contaminated water. However, studies show that ions such as F(-) and NO(3)(-) occur in distillates from solar stills. In order to understand the reasons for this behavior, imaging and distillation experiments were conducted. White dots were seen in the vapor space above the interface of hot water poured into containers. The concentrations of various ions such as F(-) and SO(4)(2-) in the distillates from thermal and solar distillation experiments were roughly comparable when the feed consisted of deionized water and also solutions having fluoride concentrations of 100 and 10 000 mg/L. These observations suggest that aerosols enter the distillation setup through leaks and provide nuclei for the condensation of water vapor. The water-soluble component of aerosols dissolves in the drops formed, and some of the drops are transferred to the distillate by buoyancy-driven convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High frequency PWM inverters produce an output voltage spectrum at the fundamental reference frequency and around the switching frequency. Thus ideally PWM inverters do not introduce any significant lower order harmonics. However, in real systems, due to dead-time effect, device drops and other non-idealities lower order harmonics are present. In order to attenuate these lower order harmonics and hence to improve the quality of output current, this paper presents an \emph{adaptive harmonic elimination technique}. This technique uses an adaptive filter to estimate a particular harmonic that is to be attenuated and generates a voltage reference which will be added to the voltage reference produced by the current control loop of the inverter. This would have an effect of cancelling the voltage that was producing the particular harmonic. The effectiveness and the limitations of the technique are verified experimentally in a single phase PWM inverter in stand-alone as well as g rid interactive modes of operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the effect of longitudinal magnetic field on ultrasonic vibration in single walled carbon nanotubes (CNTs) based on nonlocal continuum medium theory. Governing partial differential equations of CNTs are derived by considering the Lorentz magnetic forces applied on CNTs induced by a longitudinal magnetic field through Maxwell equations. The vibration characteristics of CNTs under a longitudinal magnetic field are obtained by solving the governing equations via wave propagation approach. The effects of longitudinal magnetic field on vibration of CNTs are discussed through numerical experiments. The present analysis show that vibration frequencies of CNTs drops dramatically in the presence of the magnetic field for various circumferential wavenumbers. Such effect is also observed for various boundary conditions of the CNT. New features for the effect of longitudinal magnetic field on ultrasonic vibration of CNTs, presented in this paper are useful in the design of nano-drive device, nano-oscillator and actuators and nano-electron technology, where carbon nanotubes act as basic elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An imbalance between breakup and coalescence of drops in turbulent liquid-liquid dispersions leads to inversion of phases the dispersed phase becomes continuous and vice versa. An increase in the rate of coalescence of drops is expected to decrease the dispersed phase fraction at which inversion occurs. In the present work, we increased the rate of coalescence of drops by adding electrolyte to pure liquid-liquid dispersions. The experiments carried out for three representative liquid-liquid systems show that contrary to the expectation the addition of an electrolyte increases the dispersed phase fraction at which inversion occurs for both, oil-in-water and water-in-oil dispersions. The step-down experiments confirm that the addition of the electrolyte increases the rate of coalescence of drops in lean dispersions under the same conditions, thereby confirming an anomalous effect of the presence of an electrolyte on the stability of dispersions. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is a review prepared for the second Marseille Colloquium on the mechanics of turbulence, held in 2011, 50 years after the first. The review covers recent developments in our understanding of the large-scale dynamics of cumulus cloud flows and of the atmospheric boundary layer in the low-wind convective regime that is often encountered in the tropics. It has recently been shown that a variety of cumulus cloud forms and life cycles can be experimentally realized in the laboratory, with the transient diabatic plume taken as the flow model for a cumulus cloud. The plume is subjected to diabatic heating scaled to be dynamically similar to heat release from phase changes in clouds. The experiments are complemented by exact numerical solutions of the Navier-Stokes-Boussinesq equations for plumes with scaled off-source heating. The results show that the Taylor entrainment coefficient first increases with heating, reaches a positive maximum and then drops rapidly to zero or even negative values. This reduction in entrainment is a consequence of structural changes in the flow, smoothing out the convoluted boundaries in the non-diabatic plume, including the tongues engulfing the ambient flow. This is accompanied by a greater degree of mixedness in the core flow because of lower dilution by the ambient fluid. The cloud forms generated depend strongly on the history of the diabatic heating profile in the vertical direction. The striking effects of heating on the flow are attributable to the operation of the baroclinic torque due to the temperature field. The mean baroclinic torque is shown to peak around a quasi-cylindrical sheet situated midway between the axis of the flow and the edges. This torque is shear-enhancing and folds down the engulfment tongues. The increase in mixedness can be traced to an explosive growth in the enstrophy, triggered by a strong fluctuating baroclinic torque that acts as a source, especially at the higher wave numbers, thus enhancing the mixedness. In convective boundary layers field measurements show that, under conditions prevailing in the tropics, the eddy fluxes of momentum and energy do not follow the Monin-Obukhov similarity. Instead, the eddy momentum flux is found to be linear in the wind speed at low winds; and the eddy heat flux is, to a first approximation, governed by free convection laws, with wind acting as a small perturbation on a regime of free convection. A new boundary layer code, based on heat flux scaling rather than wall-stress scaling, shows promising improvements in predictive skills of a general circulation model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the possibility of projecting low-dimensional chaos from spatiotemporal dynamics of a model for a kind of plastic instability observed under constant strain rate deformation conditions. We first discuss the relationship between the spatiotemporal patterns of the model reflected in the nature of dislocation bands and the nature of stress serrations. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatiotemporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low-dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space-independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There have been several studies on the performance of TCP controlled transfers over an infrastructure IEEE 802.11 WLAN, assuming perfect channel conditions. In this paper, we develop an analytical model for the throughput of TCP controlled file transfers over the IEEE 802.11 DCF with different packet error probabilities for the stations, accounting for the effect of packet drops on the TCP window. Our analysis proceeds by combining two models: one is an extension of the usual TCP-over-DCF model for an infrastructure WLAN, where the throughput of a station depends on the probability that the head-of-the-line packet at the Access Point belongs to that station; the second is a model for the TCP window process for connections with different drop probabilities. Iterative calculations between these models yields the head-of-the-line probabilities, and then, performance measures such as the throughputs and packet failure probabilities can be derived. We find that, due to MAC layer retransmissions, packet losses are rare even with high channel error probabilities and the stations obtain fair throughputs even when some of them have packet error probabilities as high as 0.1 or 0.2. For some restricted settings we are also able to model tail-drop loss at the AP. Although involving many approximations, the model captures the system behavior quite accurately, as compared with simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is a continuation of our efforts to quantify the irregular scalar stress signals from the Ananthakrishna model for the Portevin-Le Chatelier instability observed under constant strain rate deformation conditions. Stress related to the spatial average of the dislocation activity is a dynamical variable that also determines the time evolution of dislocation densities. We carry out detailed investigations on the nature of spatiotemporal patterns of the model realized in the form of different types of dislocation bands seen in the entire instability domain and establish their connection to the nature of stress serrations. We then characterize the spatiotemporal dynamics of the model equations by computing the Lyapunov dimension as a function of the drive parameter. The latter scales with the system size only for low strain rates, where isolated dislocation bands are seen, and at high strain rates, where fully propagating bands are seen. At intermediate applied strain rates corresponding to the partially propagating bands, the Lyapunov dimension exhibits two distinct slopes, one for small system sizes and another for large. This feature is rationalized by demonstrating that the spatiotemporal patterns for small system sizes are altered from the partially propagating band types to isolated burst type. This in turn allows us to reconfirm that low-dimensional chaos is projected from the stress signals as long as there is a one-to-one correspondence between the bursts of dislocation bands and the stress drops. We then show that the stress signals in the regime of partially to fully propagative bands have features of extensive chaos by calculating the correlation dimension density. We also show that the correlation dimension density also depends on the system size. A number of issues related to the system size dependence of the Lyapunov dimension density and the correlation dimension density are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the spatio-temporal dynamical features of the Ananthakrishna model for the Portevin-Le Chatelier effect, a kind of plastic instability observed under constant strain rate deformation conditions. We then establish a qualitative correspondence between the spatio-temporal structures that evolve continuously in the instability domain and the nature of the irregularity of the scalar stress signal. Rest of the study is on quantifying the dynamical information contained in the stress signals about the spatio-temporal dynamics of the model. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatio-temporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands. The stress signals in the partially propagating to fully propagating bands turn to have features of extensive chaos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instrumented microindentation (IM) on two Ni-Ti shape memory alloys (SMAs), where one is austenitic and the other is martensitic at room temperature, were conducted from 40 to 150 degrees C. Results show that the depth and work recovery ratios, eta(d) and eta(w) respectively, are complementary to each other. While eta(d) decreases gradually with temperature for austenite, it drops markedly for the martensite in the martensite-to-austenite transformation regime. These results affirm the utility of IM for characterizing SMAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lead-free Ba (Ti1-xZrx)O-3 ceramic has shown enhanced piezo-response (d(33)) in a narrow composition interval (0.01 <= x <= 0.03) exhibiting the coexistence of two ferroelectric phases. The system presents two electric-field-dependent-property regimes: (i) a low field regime (E < 1.7 kV mm(-1)) where d(33) is nearly independent of the poling field, and (ii) (E > 1.7 kV mm(-1)) for which d(33) drops sharply. X-ray diffraction studies revealed that the later phenomenon is related to field driven irreversible structural transformation, which tends to drive the system away from an equilibrium two phase state to a nearly single phase metastable state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the design and development of a novel optical vehicle classifier system, which is based on interruption of laser beams, that is suitable for use in places with poor transportation infrastructure. The system can estimate the speed, axle count, wheelbase, tire diameter, and the lane of motion of a vehicle. The design of the system eliminates the need for careful optical alignment, whereas the proposed estimation strategies render the estimates insensitive to angular mounting errors and to unevenness of the road. Strategies to estimate vehicular parameters are described along with the optimization of the geometry of the system to minimize estimation errors due to quantization. The system is subsequently fabricated, and the proposed features of the system are experimentally demonstrated. The relative errors in the estimation of velocity and tire diameter are shown to be within 0.5% and to change by less than 17% for angular mounting errors up to 30 degrees. In the field, the classifier demonstrates accuracy better than 97.5% and 94%, respectively, in the estimation of the wheelbase and lane of motion and can classify vehicles with an average accuracy of over 89.5%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imaging thick specimen at a large penetration depth is a challenge in biophysics and material science. Refractive index mismatch results in spherical aberration that is responsible for streaking artifacts, while Poissonian nature of photon emission and scattering introduces noise in the acquired three-dimensional image. To overcome these unwanted artifacts, we introduced a two-fold approach: first, point-spread function modeling with correction for spherical aberration and second, employing maximum-likelihood reconstruction technique to eliminate noise. Experimental results on fluorescent nano-beads and fluorescently coated yeast cells (encaged in Agarose gel) shows substantial minimization of artifacts. The noise is substantially suppressed, whereas the side-lobes (generated by streaking effect) drops by 48.6% as compared to raw data at a depth of 150 mu m. Proposed imaging technique can be integrated to sophisticated fluorescence imaging techniques for rendering high resolution beyond 150 mu m mark. (C) 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniaxial compression experiments were conducted on two magnesium (Mg) single crystals whose crystallographic orientations facilitate the deformation either by basal slip or by extension twinning. Specimen size effects were examined by conducting experiments on mu m- and mm-sized samples. A marked specimen size effect was noticed, with micropillars exhibiting significantly higher flow stress than bulk samples. Further, it is observed that the twin nucleation stress exerts strong size dependence, with micropillars requiring substantially higher stress than the bulk samples. The flow curves obtained on the bulk samples are smooth whereas those obtained from micropillars exhibit intermittent and precipitous stress drops. Electron backscattered diffraction and microstructural analyses of the deformed samples reveal that the plastic deformation in basal slip oriented crystals occurs only by slip while twin oriented crystals deform by both slip and twinning modes. The twin oriented crystals exhibit a higher strain hardening during plastic deformation when compared to the single slip oriented crystals. The strain hardening rate, theta, of twin oriented crystals is considerably greater in micropillars compared to the bulk single crystals, suggesting the prevalence of different work hardening mechanisms at these different sample sizes. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.