976 resultados para LYMPHATIC METASTASIS
Resumo:
BACKGROUND Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. METHODS To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. RESULTS Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. CONCLUSION E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer.
Resumo:
Colorectal cancer is one of the most prevalent cancers in developed countries. However, the genetic factors influencing its appearance remain far from being fully characterized. Recently, a G>A functional transition mapping the 3' untranslated region of the CXCL12 gene (rs1801157) has been found to be under-represented among rectal cancer patients when compared to colon cancer patients from a Swedish series. Here we present the results from an independent analysis of CXCL12 rs1801157 in a larger CRC series of Spanish origin in order to analyse the robustness of this association within a different European population. No significant difference was observed between controls and colon or rectal cancer patients. We were also unable to find a correlation between rs1801157 and different prognostic markers such as metastasis development or disease-free survival time. The epidemiologic data involving CXCL12 rs1801157 in colorectal cancer risk are discussed.
Resumo:
Obesity-induced chronic inflammation leads to activation of the immune system that causes alterations of iron homeostasis including hypoferraemia, iron-restricted erythropoiesis, and finally mild-to-moderate anaemia. Thus, preoperative anaemia and iron deficiency are common among obese patients scheduled for bariatric surgery (BS). Assessment of patients should include a complete haematological and biochemical laboratory work-up, including measurement of iron stores, vitamin B12 and folate. In addition, gastrointestinal evaluation is recommended for most patients with iron-deficiency anaemia. On the other hand, BS is a long-lasting inflammatory stimulus in itself and entails a reduction of the gastric capacity and/or exclusion from the gastrointestinal tract which impair nutrients absorption, including dietary iron. Chronic gastrointestinal blood loss and iron-losingenteropathy may also contribute to iron deficiency after BS. Perioperative anaemia has been linked to increased postoperative morbidity and mortality and decreased quality of life after major surgery, whereas treatment of perioperative anaemia, and even haematinic deficiency without anaemia, has been shown to improve patient outcomes and quality of life. However, long-term follow-up data in regard to prevalence, severity, and causes of anaemia after BS are mostly absent. Iron supplements should be administered to patients after BS, but compliance with oral iron is no good. In addition, once iron deficiency has developed, it may prove refractory to oral treatment. In these situations, IV iron (which can circumvent the iron blockade at enterocytes and macrophages) has emerged as a safe and effective alternative for perioperative anaemia management. Monitoring should continue indefinitely even after the initial iron repletion and anaemia resolution, and maintenance IV iron treatment should be provided as required. New IV preparations, such ferric carboxymaltose, are safe, easy to use and up to 1000 mg can be given in a single session, thus providing an excellent tool to avoid or treat iron deficiency in this patient population.
Resumo:
The neonatal immune response is impaired during the first weeks after birth. To obtain a better understanding of this immaturity, we investigated the development of T cell interactions with B cells in mice. For this purpose, we analyzed the immune response to three T-dependent antigens in vivo: (i) the polyclonal antibody response induced by vaccinia virus; (ii) the production of polyclonal and specific antibodies following immunization with hapten-carrier conjugates; (iii) the mouse mammary tumor virus superantigen (sAg) response involving an increase in sAg-reactive T cells and induction of polyclonal antibody production. After vaccinia virus injection into neonates, the polyclonal antibody response was similar to that observed in adult mice. The antibody response to hapten-carrier conjugates, however, was delayed and reduced. Injection with sAg-expressing B cells from neonatal or adult mice allowed us to determine whether B cells, T cells or both were implicated in the reduced immune response. In these sAg responses, neonatal T cells were stimulated by both neonatal and adult sAg-presenting B cells but only B cells from adult mice differentiated into IgM- and IgG-secreting plasma cells in the neonatal environment in vivo. Injecting neonatal B cells into adult mice did not induce antibody production. These results demonstrate that the environment of the neonatal lymph node is able to support a T and B cell response, and that immaturity of B cells plays a key role in the reduced immune response observed in the neonate.
Resumo:
Hodgkin's lymphoma represents one of the most frequent lymphoproliferative syndromes, especially in young population. Although HL is considered one of the most curable tumors, a sizeable fraction of patients recur after successful upfront treatment or, less commonly, are primarily resistant. This work tries to summarize the data on clinical, histological, pathological, and biological factors in HL, with special emphasis on the improvement of prognosis and their impact on therapeutical strategies. The recent advances in our understanding of HL biology and immunology show that infiltrated immune cells and cytokines in the tumoral microenvironment may play different functions that seem tightly related with clinical outcomes. Strategies aimed at interfering with the crosstalk between tumoral Reed-Sternberg cells and their cellular partners have been taken into account in the development of new immunotherapies that target different cell components of HL microenvironment. This new knowledge will probably translate into a change in the antineoplastic treatments in HL in the next future and hopefully will increase the curability rates of this disease.
Resumo:
Materials/Methods: Four patients who underwent whole-brain radiotherapy (WBRT) and simultaneous integrated boost (SIB) between August 2010 and February 2011 were included to this study. Their age were 60, 61, 65, and 70 years. Primary diagnosis was infiltrative ductal breast cancer in two patients, sigmoid adenocarcinoma in one, and transitional bladder cancer in the other patient. All patients underwent cranial surgery but not all of the metastases were operated in 2 patients. All but one (five metastases) patient presented with single brain metastasis. In 2 of the 4 patients, hippocampus was spared contralaterally due to vicinity of the lesions to unilateral hippocampus. Planning irradiation dose was 30 Gy in 10 fractions for WBRT and 40 Gy in 10 fractions for SIB over two weeks in three patients. In one patient, WBRT and boost doses were 36Gy and 50.4 Gy in 18 fractions. Our maximum dose constraints for hippocampus and eyes were 10 and 20 Gy, respectively. All organs were contoured manually. Hippocampi were contoured according to published guidelines, and 5-mm margin expansion was used for hippocampal avoidance volume. All plans utilized a field width of 2.5 cm. Modulation factors ranged between 2 and 3.5. A pitch of 0,287 was used for all patients. All plans were evaluated according to conformity index (CI), homogeneity index (HI), target coverage (TC), and mean normalized total dose (NTDmean). An alpha/beta ratio of 2 was assumed for the hippocampus.Results: Median planning target volume (PTV) for metastases was 17.47 cc.Median hippocampal avoidance volume was 14.73 cc (range, 9.25-16.18 cc). Median average hippocampaldose was 11.84 Gy (range, 10.14-21.01 Gy). PTVs were fully covered with more than 95% of the prescribed dose for all patients. With a median follow-up time of 6 months (range, 3-9 months), all patients were alive without recurrent intracranial disease. To date, no neurocognitive decline reported in any of the patients.Conclusions: Preclinical evidence suggests that hippocampal sparing during cranial irradiation may mitigate neurocognitive decline. Using HT, we significantly reduced the mean dose to the hippocampus without jeopardizing coverage of metastases and whole brain.
Resumo:
Lymphatic filarial (LF) parasites have been under anti-filarial drug pressure for more than half a century. Currently, annual mass drug administration (MDA) of diethylcarbamazine (DEC) or ivermectin in combination with albendazole (ALB) have been used globally to eliminate LF. Long-term chemotherapies exert significant pressure on the genetic structure of parasitic populations. We investigated the genetic variation among 210 Wuchereria bancrofti populations that were under three different chemotherapy strategies, namely MDA with DEC alone (group I, n = 74), MDA with DEC and ALB (group II, n = 60) and selective therapy (ST) with DEC (group III, n = 34) to understand the impact of these three drug regimens on the parasite genetic structure. Randomly amplified polymorphic DNA profiles were generated for the three groups of parasite populations; the gene diversity, gene flow and genetic distance values were determined and phylogenetic trees were constructed. Analysis of these parameters indicated that parasite populations under ST with a standard dose of DEC (group III) were genetically more diverse (0.2660) than parasite populations under MDA with DEC alone (group I, H = 0.2197) or with DEC + ALB (group II, H = 0.2317). These results indicate that the MDA may reduce the genetic diversity of W. bancrofti populations when compared to the genetic diversity of parasite populations under ST.
Resumo:
BACKGROUND: Filarial nematodes, including Brugia malayi, the causative agent of lymphatic filariasis, undergo molting in both arthropod and mammalian hosts to complete their life cycles. An understanding of how these parasites cross developmental checkpoints may reveal potential targets for intervention. Pharmacological evidence suggests that ecdysteroids play a role in parasitic nematode molting and fertility although their specific function remains unknown. In insects, ecdysone triggers molting through the activation of the ecdysone receptor: a heterodimer of EcR (ecdysone receptor) and USP (Ultraspiracle). METHODS AND FINDINGS: We report the cloning and characterization of a B. malayi EcR homologue (Bma-EcR). Bma-EcR dimerizes with insect and nematode USP/RXRs and binds to DNA encoding a canonical ecdysone response element (EcRE). In support of the existence of an active ecdysone receptor in Brugia we also cloned a Brugia rxr (retinoid X receptor) homolog (Bma-RXR) and demonstrate that Bma-EcR and Bma-RXR interact to form an active heterodimer using a mammalian two-hybrid activation assay. The Bma-EcR ligand-binding domain (LBD) exhibits ligand-dependent transactivation via a GAL4 fusion protein combined with a chimeric RXR in mammalian cells treated with Ponasterone-A or a synthetic ecdysone agonist. Furthermore, we demonstrate specific up-regulation of reporter gene activity in transgenic B. malayi embryos transfected with a luciferase construct controlled by an EcRE engineered in a B. malayi promoter, in the presence of 20-hydroxy-ecdysone. CONCLUSIONS: Our study identifies and characterizes the two components (Bma-EcR and Bma-RXR) necessary for constituting a functional ecdysteroid receptor in B. malayi. Importantly, the ligand binding domain of BmaEcR is shown to be capable of responding to ecdysteroid ligands, and conversely, ecdysteroids can activate transcription of genes downstream of an EcRE in live B. malayi embryos. These results together confirm that an ecdysone signaling system operates in B. malayi and strongly suggest that Bma-EcR plays a central role in it. Furthermore, our study proposes that existing compounds targeting the insect ecdysone signaling pathway should be considered as potential pharmacological agents against filarial parasites.
Resumo:
BACKGROUND Granulocyte colony-stimulating factors (G-CSFs) have been shown to help prevent febrile neutropenia in certain subgroups of cancer patients undergoing chemotherapy, but their role in treating febrile neutropenia is controversial. The purpose of our study was to evaluate-in a prospective multicenter randomized clinical trial-the efficacy of adding G-CSF to broad-spectrum antibiotic treatment of patients with solid tumors and high-risk febrile neutropenia. METHODS A total of 210 patients with solid tumors treated with conventional-dose chemotherapy who presented with fever and grade IV neutropenia were considered to be eligible for the trial. They met at least one of the following high-risk criteria: profound neutropenia (absolute neutrophil count <100/mm(3)), short latency from previous chemotherapy cycle (<10 days), sepsis or clinically documented infection at presentation, severe comorbidity, performance status of 3-4 (Eastern Cooperative Oncology Group scale), or prior inpatient status. Eligible patients were randomly assigned to receive the antibiotics ceftazidime and amikacin, with or without G-CSF (5 microg/kg per day). The primary study end point was the duration of hospitalization. All P values were two-sided. RESULTS Patients randomly assigned to receive G-CSF had a significantly shorter duration of grade IV neutropenia (median, 2 days versus 3 days; P = 0.0004), antibiotic therapy (median, 5 days versus 6 days; P = 0.013), and hospital stay (median, 5 days versus 7 days; P = 0.015) than patients in the control arm. The incidence of serious medical complications not present at the initial clinical evaluation was 10% in the G-CSF group and 17% in the control group (P = 0.12), including five deaths in each study arm. The median cost of hospital stay and the median overall cost per patient admission were reduced by 17% (P = 0.01) and by 11% (P = 0.07), respectively, in the G-CSF arm compared with the control arm. CONCLUSIONS Adding G-CSF to antibiotic therapy shortens the duration of neutropenia, reduces the duration of antibiotic therapy and hospitalization, and decreases hospital costs in patients with high-risk febrile neutropenia.
Resumo:
INTRODUCTION Metastases are detected in 20% of patients with solid tumours at diagnosis and a further 30% after diagnosis. Radiation therapy (RT) has proven effective in bone (BM) and brain (BrM) metastases. The objective of this study was to analyze the variability of RT utilization rates in clinical practice and the accessibility to medical technology in our region. PATIENTS AND METHODS We reviewed the clinical records and RT treatment sheets of all patients undergoing RT for BM and/or BrM during 2007 in the 12 public hospitals in an autonomous region of Spain. Data were gathered on hospital type, patient type and RT treatment characteristics. Calculation of the rate of RT use was based on the cancer incidence and the number of RT treatments for BM, BrM and all cancer sites. RESULTS Out of the 9319 patients undergoing RT during 2007 for cancer at any site, 1242 (13.3%; inter-hospital range, 26.3%) received RT for BM (n = 744) or BrM (n = 498). These 1242 patients represented 79% of all RT treatments with palliative intent, and the most frequent primary tumours were in lung, breast, prostate or digestive system. No significant difference between BM and BrM groups were observed in: mean age (62 vs. 59 yrs, respectively); gender (approximately 64% male and 36% female in both); performance status (ECOG 0-1 in 70 vs. 71%); or mean distance from hospital (36 vs. 28.6 km) or time from consultation to RT treatment (13 vs. 14.3 days). RT regimens differed among hospitals and between patient groups: 10 × 300 cGy, 5 × 400 cGy and 1x800cGy were applied in 32, 27 and 25%, respectively, of BM patients, whereas 10 × 300cGy was used in 49% of BrM patients. CONCLUSIONS Palliative RT use in BM and BrM is high and close to the expected rate, unlike the global rate of RT application for all cancers in our setting. Differences in RT schedules among hospitals may reflect variability in clinical practice among the medical teams.
Resumo:
Carboplatin-paclitaxel is a reference regimen in the treatment of locally advanced or disseminated non-small cell lung cancer (NSCLC). This paper discusses the multidrug resistance developed with this drug combination, which is one of the major obstacles to successful treatment. In order to understand and overcome the drug resistance pattern of NSCLC after carboplatin plus paclitaxel exposure, levels of mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance-associated protein 3 (MRP3) were investigated in primary NSCLC cell lines (A-549 and A-427) and a metastasis-derived NSCLC cell line (NODO). Our results showed that exposure of the three NSCLC lines to plasma concentrations of paclitaxel (5 μM) produced an increase in MDR1 expression, while MRP3 showed no alteration in expression. By contrast, the same cells exposed to carboplatin plasma concentrations (30 μM) showed overexpression of MRP3. In these cells, MDR1 showed no expression changes. Interestingly, the combination of both paclitaxel and carboplatin caused increased expression of the MDR1 drug resistance gene rather than the individual treatments. These results suggest that carboplatin and paclitaxel may induce drug resistance mediated by MDR1 and MRP3, which may be enhanced by the simultaneous use of both drugs.
Resumo:
Introduction Kikuchi-Fujimoto disease, or histiocytic necrotizing lymphadenitis, is a rare, benign, autoimmune condition characterized by lymphadenopathy, fever and neutropenia. It is a self-limited condition of unknown etiology. Case presentation We report the case of a 45-year-old Caucasian man with the first known case of Kikuchi disease associated with dramatic weight loss after bariatric surgery. Conclusion Although the association between Kikuchi disease and bariatric surgery may be entirely coincidental, we speculate whether the immune dysfunction associated with weight loss may have played an etiologic role in this process.
Resumo:
The epithelial to mesenchymal transition (EMT) contributes to tumor invasion and metastasis in a variety of cancer types. In human breast cancer, gene expression studies have determined that basal-B/claudin-low and metaplastic cancers exhibit EMT-related characteristics, but the molecular mechanisms underlying this observation are unknown. As the family of miR-200 microRNAs has been shown to regulate EMT in normal tissues and cancer, here we evaluated whether the expression of the miR-200 family (miR-200f) and their epigenetic state correlate with EMT features in human breast carcinomas. We analyzed by qRT-PCR the expression of miR-200f members and various EMT-transcriptional inducers in a series of 70 breast cancers comprising an array of phenotypic subtypes: estrogen receptor positive (ER+), HER2 positive (HER2+), and triple negative (TN), including a subset of metaplastic breast carcinomas (MBCs) with sarcomatous (homologous or heterologous) differentiation. No MBCs with squamous differentiation were included. The DNA methylation status of miR-200f loci in tumor samples were inspected using Sequenom MassArray® MALDI-TOF platform. We also used two non-tumorigenic breast basal cell lines that spontaneously undergo EMT to study the modulation of miR-200f expression during EMT in vitro. We demonstrate that miR-200f is strongly decreased in MBCs compared with other cancer types. TN and HER2+ breast cancers also exhibited lower miR-200f expression than ER+ tumors. Significantly, the decreased miR-200f expression found in MBCs is accompanied by an increase in the expression levels of EMT-transcriptional inducers, and hypermethylation of the miR-200c-141 locus. Similar to tumor samples, we demonstrated that downregulation of miR-200f and hypermethylation of the miR-200c-141 locus, together with upregulation of EMT-transcriptional inducers also occur in an in vitro cellular model of spontaneous EMT. Thus, the expression and methylation status of miR-200f could be used as hypothetical biomarkers to assess the occurrence of EMT in breast cancer.
Resumo:
Worldwide incidence of malignant melanoma has been constantly increasing during the last years. Surgical excision is effective when primary tumours are thin. At later disease stages patients often succumb, due to failure of metastasis control. Therefore, great efforts have been made to develop improved strategies to treat metastatic melanoma patients. In the search for novel treatments during the last two decades, immunotherapy has occupied a prominent place. Numerous early phase immunotherapy clinical trials, generally involving small numbers of patients each time, have been reported: significant tumour-specific immune responses could often be measured in patients upon treatments. However, clinical responses remain at a dismal low rate. In some anecdotal cases, objective clinical benefit was more frequently observed among immune responders than immune non-responders. This clearly calls for a better understanding of protective immunity against tumours as well as the cross talk taking place between tumours and the immune system. Here we discuss advances and limitations of specific immunotherapy against human melanoma in the light of the literature from the last 5 yr.
Resumo:
Perioperative anaemia, with iron deficiency being its leading cause, is a frequent condition among surgical patients, and has been linked to increased postoperative morbidity and mortality, and decreased quality of life. Postoperative anaemia is even more frequent and is mainly caused by perioperative blood loss, aggravated by inflammation-induced blunting of erythropoiesis. Allogenic transfusion is commonly used for treating acute perioperative anaemia, but it also increases the rate of morbidity and mortality in surgical and critically ill patients. Thus, overall concerns about adverse effects of both preoperative anaemia and allogeneic transfusion have prompted the review of transfusion practice and the search for safer and more biologically rational treatment options. In this paper, the role of intravenous iron therapy (mostly with iron sucrose and ferric carboxymaltose), as a safe and efficacious tool for treating anaemia and reducing transfusion requirements in surgical patients, as well as in other medical areas, has been reviewed. From the analysis of published data and despite the lack of high quality evidence in some areas, it seems fair to conclude that perioperative intravenous iron administration, with or without erythropoiesis stimulating agents, is safe, results in lower transfusion requirements and hastens recovery from postoperative anaemia. In addition, some studies have reported decreased rates of postoperative infection and mortality, and shorter length of hospital stay in surgical patients receiving intravenous iron.