896 resultados para LIPID-MEMBRANES
Resumo:
The effect of D002, a defined mixture of higher primary alcohols purified from bee wax, on in vivo and in vitro lipid peroxidation was studied. The extent of lipid peroxidation was measured on the basis of the levels of thiobarbituric acid reactive substances (TBARS). When D002 (5-100 mg/kg body weight) was administered orally to rats for two weeks, a partial inhibition of the in vitro enzymatic and non-enzymatic lipid peroxidation was observed in liver and brain microsomes. Maximal protection (46%) occurred at a dose of 25 mg/kg. D002 behaved differently depending on both the presence of NADPH and the integrity of liver microsomes, which suggests that under conditions where microsomal metabolism was favored the protective effect of D002 was increased. D002 (25 mg/kg) also completely inhibited carbon tetrachloride- and toluene-induced in vivo lipid peroxidation in liver and brain. Also, D002 significantly lowered in a dose-dependent manner the basal level of TBARS in liver (19-40%) and brain (28-44%) microsomes. We conclude that the oral administration of D002 (5, 25 and 100 mg/kg) for two weeks protected rat liver and brain microsomes against microsomal lipid peroxidation in vitro and in vivo. Thus, D002 could be useful as a dietary natural antioxidant supplement. More studies are required before these data can be extrapolated to the recommendation for the use of D002 as a dietary antioxidant supplement for humans.
Resumo:
2-Hydroxybutyric acid appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. The present study was carried out to determine the effect of 2-hydroxybutyric acid at various concentrations (1-10 mM) on CO2 production and lipid synthesis from labeled substrates in cerebral cortex of 30-day-old Wistar rats in vitro. CO2 production was significantly inhibited (30-70%) by 2-hydroxybutyric acid in cerebral cortex prisms, in total homogenates and in the mitochondrial fraction. We also demonstrated a significant inhibition of lipid synthesis (20-45%) in cerebral cortex prisms and total homogenates in the presence of 2-hydroxybutyric acid. However, no inhibition of lipid synthesis occurred in homogenates free of nuclei and mitochondria. The results indicate an impairment of mitochondrial energy metabolism caused by 2-hydroxybutyric acid, a fact that may secondarily lead to reduction of lipid synthesis. It is possible that these findings may be associated with the neuropathophysiology of the situations where 2-hydroxybutyric acid is accumulated.
Resumo:
The effects of in vivo chronic treatment and in vitro addition of imipramine, a tricyclic antidepressant, or fluoxetine, a selective serotonin reuptake inhibitor, on the cortical membrane-bound Na+,K+-ATPase activity were studied. Adult Wistar rats received daily intraperitoneal injections of 10 mg/kg of imipramine or fluoxetine for 14 days. Twelve hours after the last injection rats were decapitated and synaptic plasma membranes (SPM) from cerebral cortex were prepared to determine Na+,K+-ATPase activity. There was a significant decrease (10%) in enzyme activity after imipramine but fluoxetine treatment caused a significant increase (27%) in Na+,K+-ATPase activity compared to control (P<0.05, ANOVA; N = 7 for each group). When assayed in vitro, the addition of both drugs to SPM of naive rats caused a dose-dependent decrease in enzyme activity, with the maximal inhibition (60-80%) occurring at 0.5 mM. We suggest that a) imipramine might decrease Na+,K+-ATPase activity by altering membrane fluidity, as previously proposed, and b) stimulation of this enzyme might contribute to the therapeutic efficacy of fluoxetine, since brain Na+,K+-ATPase activity is decreased in bipolar patients.
Resumo:
Aluminum (Al3+) overload is frequently associated with lipid peroxidation and neurological disorders. Aluminum accumulation is also reported to be related to renal impairment, anemia and other clinical complications in hemodialysis patients. The aim of the present study was to determine the degree of lipid peroxidation, platelet aggregation and serum aluminum in patients receiving regular hemodialytic treatment. The level of plasma lipid peroxidation was evaluated on the basis of thiobarbituric acid reactive substances (TBARS). Mean platelet peroxidation in patients undergoing hemodialysis was significantly higher than in normal controls (2.7 ± 0.03 vs 1.8 ± 0.06 nmol/l, P<0.05). Platelet aggregation and serum aluminum levels were determined by a turbidimetric method and atomic absorption spectrophotometry, respectively. Serum aluminum was significantly higher in patients than in normal controls (44.5 ± 29 vs 10.8 ± 2.5 µg/l, P<0.05). Human blood platelets were stimulated with collagen (2.2 µg/ml), adenosine diphosphate (6 µM) and epinephrine (6 µM) and showed reduced function with the three agonists utilized. No correlation between aluminum levels and platelet aggregation or between aluminum and peroxidation was observed in hemodialyzed patients.
Resumo:
It is well known that the interaction of polyelectrolytes with oppositely charged surfactants leads to an associative phase separation; however, the phase behavior of DNA and oppositely charged surfactants is more strongly associative than observed in other systems. A precipitate is formed with very low amounts of surfactant and DNA. DNA compaction is a general phenomenon in the presence of multivalent ions and positively charged surfaces; because of the high charge density there are strong attractive ion correlation effects. Techniques like phase diagram determinations, fluorescence microscopy, and ellipsometry were used to study these systems. The interaction between DNA and catanionic mixtures (i.e., mixtures of cationic and anionic surfactants) was also investigated. We observed that DNA compacts and adsorbs onto the surface of positively charged vesicles, and that the addition of an anionic surfactant can release DNA back into solution from a compact globular complex between DNA and the cationic surfactant. Finally, DNA interactions with polycations, chitosans with different chain lengths, were studied by fluorescence microscopy, in vivo transfection assays and cryogenic transmission electron microscopy. The general conclusion is that a chitosan effective in promoting compaction is also efficient in transfection.
Resumo:
The purpose of the present study was to examine myocardial antioxidant and oxidative stress changes in male and female rats in the presence of physiological sex hormone concentrations and after castration. Twenty-four 9-week-old Wistar rats were divided into four groups of 6 animals each: 1) sham-operated females, 2) castrated females, 3) sham-operated males, and 4) castrated males. When testosterone and estrogen levels were measured by radioimmunoassay, significant differences were observed between the castrated and control groups (both males and females), demonstrating the success of castration. Progesterone and catalase levels did not change in any group. Control male rats had higher levels of glutathione peroxidase (50%) and lower levels of superoxide dismutase (SOD, 14%) than females. Control females presented increased levels of SOD as compared to the other groups. After castration, SOD activity decreased by 29% in the female group and by 14% in the male group as compared to their respective controls. Lipid peroxidation (LPO) was assessed to evaluate oxidative damage to cardiac membranes by two different methods, i.e., TBARS and chemiluminescence. LPO was higher in male controls compared to female controls when evaluated by both methods, TBARS (360%) and chemiluminescence (46%). Castration induced a 200% increase in myocardial damage in females as determined by TBARS and a 20% increase as determined by chemiluminescence. In males, castration did not change LPO levels. These data suggest that estrogen may have an antioxidant role in heart muscle, while testosterone does not.
Resumo:
Exposure to stress induces a cluster of physiological and behavioral changes in an effort to maintain the homeostasis of the organism. Long-term exposure to stress, however, has detrimental effects on several cell functions such as the impairment of antioxidant defenses leading to oxidative damage. Oxidative stress is a central feature of many diseases. The lungs are particularly susceptible to lesions by free radicals and pulmonary antioxidant defenses are extensively distributed and include both enzymatic and non-enzymatic systems. The aim of the present study was to determine lipid peroxidation and total radical-trapping potential (TRAP) changes in lungs of rats submitted to different models of chronic stress. Adult male Wistar rats weighing 180-230 g were submitted to different stressors (variable stress, N = 7) or repeated restraint stress for 15 (N = 10) or 40 days (N = 6) and compared to control groups (N = 10 each). Lipid peroxidation levels were assessed by thiobarbituric acid reactive substances (TBARS), and TRAP was measured by the decrease in luminescence using the 2-2'-azo-bis(2-amidinopropane)-luminol system. Chronic variable stress induced a 51% increase in oxidative stress in lungs (control group: 0.037 ± 0.002; variable stress: 0.056 ± 0.007, P < 0.01). No difference in TBARS was observed after chronic restraint stress, but a significant 57% increase in TRAP was presented by the group repeatedly restrained for 15 days (control group: 2.48 ± 0.42; stressed: 3.65 ± 0.16, P < 0.05). We conclude that different stressors induce different effects on the oxidative status of the organism.
Resumo:
We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA) turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet), or the control diet containing soybean oil as fat source (10 mice per group). The fat content of each diet was 15% (w/w). Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL)-cholesterol, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.
Resumo:
Genetic studies have suggested that polymorphisms of genes coding for apolipoproteins are significant determinants of serum lipoprotein and lipid levels in adults. However, only a few studies have investigated the association of these polymorphisms in children. Therefore, in the present investigation we studied the distribution of APOA1 -75 G>A, +83 C>T, APOC3 -482 C>T, -455 T>C and 3238 C>G, and APOA4 Q360H and T347S polymorphisms and their influence on plasma lipoprotein levels in children from a Brazilian northeastern admixed population. The seven polymorphic sites were genotyped in 414 children aged 5 to 15 years (mean 8.9 ± 2.9). The genotypes of the seven polymorphic sites were assessed by PCR-RFLP methods. The frequencies of the less common alleles were, in general, intermediate among parental populations, as expected. Strong linkage disequilibrium was detected between polymorphisms at the APOA1, APOC3 and APOA4 loci in this admixed population sample. Overall the genotype effects seen in adults were weaker or absent in children. The APOC3/-455 and APOA4 T347S variants showed significant effects on HDL cholesterol in girls (P = 0.033 and P = 0.016, respectively). Significantly higher plasma total (P = 0.003) and LDL cholesterol (P = 0.004) levels were observed in boys who were carriers of the 3238G allele at the APOC3/3238 C>G site. These results disclosed an overall absence of associations between these polymorphisms and lipids in children. This finding is not unexpected because expression of the effect of these polymorphisms might depend on the interaction with environmental variables both internal and external to the individual.
Resumo:
Cardiovascular disease is the primary cause of death in Brazil. Recent studies have shown that low birth weight and preterm birth are linked to a higher prevalence of cardiovascular disease. The aim of the present study was to compare the levels of lipids and apolipoproteins and atherogenic indexes between term and near-term newborn infants. A sample of umbilical cord blood was obtained from 135 newborns (66 males) divided into two groups: 25 near-term neonates (35-36.6 weeks of gestational age) and 110 term neonates (37-42 weeks of gestational age). The total cholesterol concentrations were higher in the near-term neonates than in the term group (94.04 ± 8.02 vs 70.42 ± 1.63 mg/dl, P < 0.01), due to an increase in the LDL-cholesterol fraction in the near-term group (57.76 ± 6.39 vs 34.38 ± 1.29 mg/dl, P < 0.001). The atherogenic indexes (total cholesterol/HDL-cholesterol, LDL-cholesterol/HDL-cholesterol and apolipoprotein B/apolipoprotein A-I) were higher in the near-term group (P < 0.001, P < 0.001, and P < 0.05, respectively). The gestational age of the newborns was inversely correlated with total cholesterol and LDL-cholesterol, and also with the total cholesterol/HDL-cholesterol and LDL-cholesterol/HDL-cholesterol indexes. These findings demonstrate that the lipid profile is worse in the group of near-term neonates compared with the term group. Future studies are needed to determine if this atherogenic profile in near-term neonates can affect body metabolism, increasing the risk for cardiovascular diseases in adult life.
Resumo:
Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.
Resumo:
Fifty-seven type 2 diabetic patients with metabolic syndrome and on insulin were assessed by a paired analysis before and 6 months after addition of metformin as combination therapy to evaluate the impact of the association on glycemic control, blood pressure, and lipid profile. This was a historical cohort study in which the files of type 2 diabetic patients with metabolic syndrome on insulin were reviewed. The body mass index (BMI), waist circumference, lipid profile, A1C level, fasting blood glucose level, daily dose of NPH insulin, systolic blood pressure, and diastolic blood pressure were assessed in each patient before the start of metformin and 6 months after the initiation of combination therapy. Glycemic control significantly improved (P < 0.001) after the addition of metformin (1404.4 ± 565.5 mg/day), with 14% of the 57 patients reaching A1C levels up to 7%, and 53% reaching values up to 8%. There was a statistically significant reduction (P < 0.05) of total cholesterol (229.0 ± 29.5 to 214.2 ± 25.0 mg/dL), BMI (30.7 ± 5.4 to 29.0 ± 4.0 kg/m²), waist circumference (124.6 ± 11.7 to 117.3 ± 9.3 cm), and daily necessity of insulin. The reduction of total cholesterol occurred independently of the reductions of A1C (9.65 ± 1.03 to 8.18 ± 1.01%) and BMI and the reduction of BMI and WC did not interfere with the improvement of A1C. In conclusion, our study showed the efficacy of the administration of metformin and insulin simultaneously without negative effects. No changes were detected in HDL-cholesterol or blood pressure.
Resumo:
In mammals, hexokinase (HK) is strategically located at the outer membrane of mitochondria bound to the porin protein. The mitochondrial HK is a crucial modulator of apoptosis and reactive oxygen species generation. In plants, these properties related to HK are unknown. In order to better understand the physiological role of non-cytosolic hexokinase (NC-HK) in plants, we developed a purification strategy here described. Crude extract of 400 g of maize roots (230 mg protein) contained a specific activity of 0.042 µmol G6P min-1 mg PTN-1. After solubilization with detergent two fractions were obtained by DEAE column chromatography, NC-HK 1 (specific activity = 3.6 µmol G6P min-1 mg PTN-1 and protein recovered = 0.7 mg) and NC-HK 2. A major purification (yield = 500-fold) was obtained after passage of NC-HK 1 through the hydrophobic phenyl-Sepharose column. The total amount of protein and activity recovered were 0.04 and 18%, respectively. The NC-HK 1 binds to the hydrophobic phenyl-Sepharose matrix, as observed for rat brain HK. Mild chymotrypsin digestion did not affect adsorption of NC-HK 1 to the hydrophobic column as it does for rat HK I. In contrast to mammal mitochondrial HK, glucose-6-phosphate, clotrimazole or thiopental did not dissociate NC-HK from maize (Zea mays) or rice (Oryza sativa) mitochondrial membranes. These data show that the interaction between maize or rice NC-HK to mitochondria differs from that reported in mammals, where the mitochondrial enzyme can be displaced by modulators or pharmacological agents known to interfere with the enzyme binding properties with the mitochondrial porin protein.
Resumo:
Apolipoprotein E (apoE - e2, e3, e4 alleles) plays a role in the regulation of lipid metabolism, with the e4 considered to be a risk factor for coronary artery disease (CAD). We aimed to evaluate the apoE polymorphisms in Brazilians with CAD and their influence on the lipid profile and other risk factors (hypertension, diabetes mellitus, smoking). Two hundred individuals were examined: 100 patients with atherosclerosis confirmed by coronary angiography and 100 controls. Blood samples were drawn to determine apoE polymorphisms and lipid profile. As expected, the e3 allele was prevalent in the CAD (0.87) and non-CAD groups (0.81; P = 0.099), followed by the e4 allele (0.09 and 0.14, respectively; P = 0.158). The e3/3 (76 and 78%) and e3/4 (16 and 23%) were the most common genotypes for patients and controls, respectively. The lipid profile was altered in patients compared to controls (P < 0.05), independently of the e4 allele. However, in the controls this allele was prevalent in individuals with elevated LDL-cholesterol levels only (odds ratio = 2.531; 95% CI = 1.028-6.232). The frequency of risk factors was higher in the CAD group (P < 0.05), but their association with the lipid profile was not demonstrable in e4 carriers. In conclusion, the e4 allele is not associated with CAD or lipid profile in patients with atherosclerosis. However, its frequency in the non-CAD group is associated with increased levels of LDL-cholesterol, suggesting an independent effect of the e4 allele on lipid profile when the low frequency of other risk factors in this group is taken into account.
Resumo:
The aim of the present study was to determine if there is an association between the single nucleotide polymorphisms (SNPs) of the lipoprotein lipase (LPL) and apolipoprotein E (apo E) genes and the serum lipid profile in pregnancy and puerperium. Non-diabetic women of European descent in the third semester of pregnancy (N = 120) were selected. Those with diseases or other condition that could modify their lipid profile were excluded from the study (N = 32). Serum lipids were measured by routine laboratory procedures and genomic DNA was extracted by a salting out method. LPL (PvuII and HindIII) and apo E (HhaI) SNPs were detected by the polymerase chain reaction and restriction fragment length polymorphism. Categorical and continuous variables were compared by the chi-square test and Student t-test or ANOVA, respectively. Women carrying the LPL P1P1 genotype had higher serum LDL cholesterol (N = 21; 155 ± 45 mg/dL) than women carrying the P1P2/P2P2 genotypes (N = 67; 133 ± 45 mg/dL; P = 0.032). During the puerperium period, serum levels of triglycerides and VLDL cholesterol were significantly reduced in women carrying the P1P1 (73%, P = 0.006) and P1P2 (51%, P = 0.002) genotypes but not in women carrying the P2P2 genotype (23%, P > 0.05). On the other hand, serum concentrations of lipids did not differ between the LPL HindIII and apo E genotypes during pregnancy and after delivery. We conclude that LPL PvuII SNP is associated with variations in serum lipids during pregnancy and the puerperal period in non-diabetic women.