840 resultados para LCA, life cycle assessment, LCC, life cycle cost
Resumo:
Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3 % of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16 % of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30 % of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.
Resumo:
The 3' end processing of animal replication-dependent histone mRNAs is activated during G1/S-phase transition. The processing site is recognized by stem-loop binding protein and the U7 snRNP, but cleavage additionally requires a heat-labile factor (HLF), composed of cleavage/polyadenylation specificity factor, symplekin, and cleavage stimulation factor 64 (CstF64). Although HLF has been shown to be cell cycle regulated, the mechanism of this regulation is unknown. Here we show that levels of CstF64 increase toward the S phase and its depletion affects histone RNA processing, S-phase progression, and cell proliferation. Moreover, analyses of the interactions between CstF64, symplekin, and the U7 snRNP-associated proteins FLASH and Lsm11 indicate that CstF64 is important for recruiting HLF to histone precursor mRNA (pre-mRNA)-resident proteins. Thus, CstF64 is central to the function of HLF and appears to be at least partly responsible for its cell cycle regulation. Additionally, we show that misprocessed histone transcripts generated upon CstF64 depletion mainly accumulate in the nucleus, where they are targets of the exosome machinery, while a small cytoplasmic fraction is partly associated with polysomes.
Structure of the histone mRNA hairpin required for cell cycle regulation of histone gene expression.
Resumo:
Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism.
Resumo:
Robotics-assisted tilt table (RATT) technology provides body support, cyclical stepping movement and physiological loading. This technology can potentially be used to facilitate the estimation of peak cardiopulmonary performance parameters in patients who have neurological or other problems that may preclude testing on a treadmill or cycle ergometer. The aim of the study was to compare the magnitude of peak cardiopulmonary performance parameters including peak oxygen uptake (VO2peak) and peak heart rate (HRpeak) obtained from a robotics-assisted tilt table (RATT), a cycle ergometer and a treadmill. The strength of correlations between the three devices, test-retest reliability and repeatability were also assessed. Eighteen healthy subjects performed six maximal exercise tests, with two tests on each of the three exercise modalities. Data from the second tests were used for the comparative and correlation analyses. For nine subjects, test-retest reliability and repeatability of VO2peak and HRpeak were assessed. Absolute VO2peak from the RATT, the cycle ergometer and the treadmill was (mean (SD)) 2.2 (0.56), 2.8 (0.80) and 3.2 (0.87) L/min, respectively (p < 0.001). HRpeak from the RATT, the cycle ergometer and the treadmill was 168 (9.5), 179 (7.9) and 184 (6.9) beats/min, respectively (p < 0.001). VO2peak and HRpeak from the RATT vs the cycle ergometer and the RATT vs the treadmill showed strong correlations. Test-retest reliability and repeatability were high for VO2peak and HRpeak for all devices. The results demonstrate that the RATT is a valid and reliable device for exercise testing. There is potential for the RATT to be used in severely impaired subjects who cannot use the standard modalities.
Resumo:
Recurrent airway obstruction (RAO) is a common and potentially debilitating lower airway disease in horses, which shares many similarities with human asthma. In susceptible horses RAO exacerbation is caused by environmental allergens and irritants present in hay dust. The objective of this study was the identification of genes and pathways involved in the pathology of RAO by global transcriptome analyses in stimulated peripheral blood mononuclear cells (PBMCs). We performed RNA-seq on PBMCs derived from 40 RAO affected and 45 control horses belonging to three cohorts of Warmblood horses: two half-sib families and one group of unrelated horses. PBMCs were stimulated with hay dust extract, lipopolysaccharides, a recombinant parasite antigen, or left unstimulated. The total dataset consisted of 561 individual samples. We detected significant differences in the expression profiles between RAO and control horses. Differential expression (DE) was most marked upon stimulation with hay dust extract. An important novel finding was a strong upregulation of CXCL13 together with many genes involved in cell cycle regulation in stimulated samples from RAO affected horses, in addition to changes in the expression of several HIF-1 transcription factor target genes. The RAO condition alters systemic changes observed as differential expression profiles of PBMCs. Those changes also depended on the cohort and stimulation of the samples and were dominated by genes involved in immune cell trafficking, development, and cell cycle regulation. Our findings indicate an important role of CXCL13, likely macrophage or Th17 derived, and the cell cycle regulator CDC20 in the immune response in RAO.
Resumo:
BACKGROUND: The robotics-assisted tilt table (RATT), including actuators for tilting and cyclical leg movement, is used for rehabilitation of severely disabled neurological patients. Following further engineering development of the system, i.e. the addition of force sensors and visual bio-feedback, patients can actively participate in exercise testing and training on the device. Peak cardiopulmonary performance parameters were previously investigated, but it also important to compare submaximal parameters with standard devices. The aim of this study was to evaluate the feasibility of the RATT for estimation of submaximal exercise thresholds by comparison with a cycle ergometer and a treadmill. METHODS: 17 healthy subjects randomly performed six maximal individualized incremental exercise tests, with two tests on each of the three exercise modalities. The ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) were determined from breath-by-breath data. RESULTS: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill: oxygen uptake (V'O2) at VAT was [mean (SD)] 1.2 (0.3), 1.5 (0.4) and 1.6 (0.5) L/min, respectively (p < 0.001); V'O2 at RCP was 1.7 (0.4), 2.3 (0.8) and 2.6 (0.9) L/min, respectively (p = 0.001). High correlations for VAT and RCP were found between the RATT vs the cycle ergometer and RATT vs the treadmill (R on the range 0.69-0.80). VAT and RCP demonstrated excellent test-retest reliability for all three devices (ICC from 0.81 to 0.98). Mean differences between the test and retest values on each device were close to zero. The ventilatory equivalent for O2 at VAT for the RATT and cycle ergometer were similar and both were higher than the treadmill. The ventilatory equivalent for CO2 at RCP was similar for all devices. Ventilatory equivalent parameters demonstrated fair-to-excellent reliability and repeatability. CONCLUSIONS: It is feasible to use the RATT for estimation of submaximal exercise thresholds: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill, but there were high correlations between the RATT vs the cycle ergometer and vs the treadmill. Repeatability and test-retest reliability of all submaximal threshold parameters from the RATT were comparable to those of standard devices.
Resumo:
OBJECTIVES To evaluate the level of satisfaction of individuals with cleft lip and/or palate (CLP) and their parents concerning the esthetic and functional treatment outcomes, the impact of the cleft on everyday life, and potential associations with treatment outcome satisfaction. SUBJECTS AND METHODS The sample consisted of 33 patients (7 CP, 20 unilateral CLP, and 6 bilateral CLP; median age: 17.1, range: 9.0-33.1 years) and 30 parents, who responded to a questionnaire in an interview-guided session. All participants received their orthodontic treatment at the Department of Orthodontics in the University of Athens. RESULTS Patients and their parents were quite satisfied with esthetics and function. Patients with UCLP primarily were concerned about nose esthetics (BCLP about lip esthetics and CP about speech). Increased satisfaction was associated with decreased influence of the cleft in everyday life (0.35 < rho < 0.64, P < 0.05). Parents reported significant influence of the cleft on family life, while patients did not. CONCLUSIONS Despite the limited sample size of subgroups, the main concerns of patients with different cleft types and the importance of satisfying lip, nose, and speech outcomes for an undisturbed everyday life were quite evident. Thus, the need for targeted treatment strategies is highlighted for individuals with cleft lip and/or palate.
Resumo:
The levels of histone mRNA increase 35-fold as selectively detached mitotic CHO cells progress from mitosis through G1 and into S phase. Using an exogenous gene with a histone 3' end which is not sensitive to transcriptional or half-life regulation, we show that 3' processing is regulated as cells progress from G1 to S phase. The half-life of histone mRNA is similar in G1- and S-phase cells, as measured after inhibition of transcription by actinomycin D (dactinomycin) or indirectly after stabilization by the protein synthesis inhibitor cycloheximide. Taken together, these results suggest that the change in histone mRNA levels between G1- and S-phase cells must be due to an increase in the rate of biosynthesis, a combination of changes in transcription rate and processing efficiency. In G2 phase, there is a rapid 35-fold decrease in the histone mRNA concentration which our results suggest is due primarily to an altered stability of histone mRNA. These results are consistent with a model for cell cycle regulation of histone mRNA levels in which the effects on both RNA 3' processing and transcription, rather than alterations in mRNA stability, are the major mechanisms by which low histone mRNA levels are maintained during G1.
Resumo:
MacroH2A is a core histone variant that plays an important role in the X-inactivation process during differentiation of embryonic stem cells. It has been shown that macroH2A changes in localization during the cell cycle of somatic cells. This study aims to determine how macroH2A changes during the cell cycle of embryonic stem cells. Male and female mouse embryonic stem cells were transfected with a GFP::macroH2A construct and the relationship between macroH2A and the cell cycle was determined using FACS. This study shows that macroH2A is altered during the cell cycle of embryonic stem cells as it is in somatic cells and that in randomly cycling cells, there is a correlation between macroH2A expression and the phases of the cell cycle. High GFP expressing cells are mostly in the G2/M phase and low GFP expressing cells are mostly in the G1 phase. This correlation indicated that macroH2A is replicated with cellular DNA during the S phase resulting in higher expression in the G2/M phase. Future research, such as RT-PCR and differentiation experiments, is needed to further study this relationship and determine whether this change is at the protein or RNA level and how it changes during differentiation.
Resumo:
Back ground and Purpose. There is a growing consensus among health care researchers that Quality of Life (QoL) is an important outcome and, within the field of family caregiving, cost effectiveness research is needed to determine which programs have the greatest benefit for family members. This study uses a multidimensional approach to measure the cost effectiveness of a multicomponent intervention designed to improve the quality of life of spousal caregivers of stroke survivors. Methods. The CAReS study (Committed to Assisting with Recovery after Stroke) was a 5-year prospective, longitudinal intervention study for 159 stroke survivors and their spousal caregivers upon discharge of the stroke survivor from inpatient rehabilitation to their home. CAReS cost data were analyzed to determine the incremental cost of the intervention per caregiver. The mean values of the quality-of-life predictor variables of the intervention group of caregivers were compared to the mean values of usual care groups found in the literature. Significant differences were then divided into the cost of the intervention per caregiver to calculate the incremental cost effectiveness ratio for each predictor variable. Results. The cost of the intervention per caregiver was approximately $2,500. Statistically significant differences were found between the mean scores for the Perceived Stress and Satisfaction with Life scales. Statistically significant differences were not found between the mean scores for the Self Reported Health Status, Mutuality, and Preparedness scales. Conclusions. This study provides a prototype cost effectiveness analysis on which researchers can build. Using a multidimensional approach to measure QoL, as used in this analysis, incorporates both the subjective and objective components of QoL. Some of the QoL predictor variable scores were significantly different between the intervention and comparison groups, indicating a significant impact of the intervention. The estimated cost of the impact was also examined. In future studies, a scale that takes into account both the dimensions and the weighting each person places on the dimensions of QoL should be used to provide a single QoL score per participant. With participant level cost and outcome data, uncertainty around each cost-effectiveness ratio can be calculated using the bias-corrected percentile bootstrapping method and plotted to calculate the cost-effectiveness acceptability curves.^
Resumo:
Seasonal variation in menarche, menstrual cycle length and menopause was investigated using Tremin Trust data. Too, self-reported hot flash data for women with natural and surgically-induced menopause were analyzed for rhythms.^ Menarche data from approximately 600 U.S. women born between 1940 and 1970 revealed a 6-month rhythm (first acrophase in January, double amplitude of 58%M). A notable shift from a December-January peak in menarche for those born in the 1940s and 1950s to an August-September peak for those born in the 1960s was observed. Groups of girls 8-14 and 15-17 yr old at menarche exhibited a seasonal difference in the pattern of menarche occurrence of about 6 months in relation to each other. Girls experiencing menarche during August-October were statistically significantly younger than those experiencing it at other times. Season of birth was not associated with season of menarche.^ The lengths of approximately 150,000 menstrual intervals of U.S. women were analyzed for seasonality. Menstrual intervals possibly disturbed by natural (e.g., childbirth) or other events (e.g., surgery, medication) were excluded. No 6- or 12-month rhythmicities were found for specific interval lengths (14-24, 25-31 and 32-56 days) or ages in relation to menstrual interval (9-11, 12-13, 15-19, 20-24, 25-39, 40-44 and 44 yr old and older).^ Hot flash data of 14 women experiencing natural menopause (NM) and 11 experiencing surgically-induced menopause (SIM) did not differ in frequency of hot flashes. Hot flashes in NM women exhibited 12- and 8-hr, but not 24-hr rhythmicities. Hot flashes in SIM women exhibited 24- and 12-hr, but not 8-hr, rhythmicities. Regardless of type of menopause, women with a peak frequency in hot flashes during the morning (0400 through 0950) were distinguishable from those with such in the evening (1600 through 2159).^ Data from approximately 200 U.S. women revealed a 6-month rhythm in menopause with first peak in May. No significant 12-month variation in menopause was detected by Cosinor analysis. Season of birth and age at menopause were not associated with season of menopause. Age at menopause declined significantly over the years for women born between 1907 and 1926, inclusive. ^
Resumo:
Large-scale environmental patterns in the Humboldt Current System (HCS) show major changes during strong El Niño episodes, leading to the mass mortality of dominant species in coastal ecosystems. Here we explore how these changes affect the life-history traits of the surf clam Mesodesma donacium. Growth and mortality rates under normal temperature and salinity were compared to those under anomalous (El Niño) higher temperature and reduced salinity. Moreover, the reproductive spatial-temporal patterns along the distribution range were studied, and their relationship to large-scale environmental variability was assessed. M. donacium is highly sensitive to temperature changes, supporting the hypothesis of temperature as the key factor leading to mass mortality events of this clam in northern populations. In contrast, this species, particularly juveniles, was remarkably tolerant to low salinity, which may be related to submarine groundwater discharge in Hornitos, northern Chile. The enhanced osmotic tolerance by juveniles may represent an adaptation of early life stages allowing settlement in vacant areas at outlets of estuarine areas. The strong seasonality in freshwater input and in upwelling strength seems to be linked to the spatial and temporal patterns in the reproductive cycle. Owing to its origin and thermal sensitivity, the expansion and dominance of M. donacium from the Pliocene/Pleistocene transition until the present seem closely linked to the establishment and development of the cold HCS. Therefore, the recurrence of warming events (particularly El Niño since at least the Holocene) has submitted this cold-water species to a continuous local extinction-recolonization process.
Resumo:
The European construction industry is supposed to consume the 40% of the natural European resources and to generate the 40% of the European solid waste. Conscious of the great damage being suffered by the environment because of construction activity, this work tries to provide the building actors with a new tool to improve the current situation. The tool proposed is a model for the comprehensive evaluation of construction products by determining their environmental level. In this research, the environmental level of a construction product has been defined as its quality of accomplishing the construction requirements needed by causing the minimum ecological impact in its surrounding environment. This information allows building actors to choose suitable materials for building needs and also for the environment, mainly in the project stage or on the building site, contributing to improve the relationship between buildings and environment. For the assessment of the environmental level of construction products, five indicators have been identified regarding their global environmental impact through the product life cycle: CO2 emissions provoked during their production, volume and toxicity of waste generated on the building site, durability and recycling capacity after their useful life. Therefore, the less environmental impact one construction product produces, the higher environmental level performs. The model has been tested in 30 construction products that include environmental criteria in their description. The results obtained will be discussed in this article. Furthermore, this model can lay down guidelines for the selection of ecoefficient construction products and the design of new eco-competitive and eco-committed ones
Resumo:
The improvement of energy efficiency in existing buildings is always a challenge due to their particular, and sometimes protected, constructive solutions. New constructive regulations in Spain leave a big undefined gap when a restoration is considered because they were developed for new buildings. However, rehabilitation is considered as an opportunity for many properties because it allows owners to obtain benefits from the use of the buildings. The current financial and housing crisis has turned society point of view to existing buildings and making them more efficient is one of the Spanish government’s aims. The economic viability of a rehabilitation action should take all factors into account: both construction costs and the future operative costs of the building must be considered. Nevertheless, the application of these regulations in Spain is left to the designer’s opinion and always under a subjective point of view. With the research work described in this paper and with the help of some case-studies, the cost of adapting an existing building to the new constructive regulations will be studied and Energetic Efficiency will be evaluated depending on how the investment is recovered. The interest of the research is based on showing how new constructive solutions can achieve higher levels of efficiency in terms of energy, construction and economy and it will demonstrate that Life Cycle Costing analysis can be a mechanism to find the advantages and disadvantages of using these new constructive solutions. Therefore, this paper has the following objectives: analysing constructive solutions in existing buildings - to establish a process for assessing total life cycle costs (LCC) during the planning stages with consideration of future operating costs - to select the most advantageous operating system – To determine the return on investment in terms of construction costs based on new techniques, the achieved energy savings and investment payback periods.